Amplification of protein expression in a cell free system

Edgard Resto, Akira Iida, Mark D.Van Cleve and Sidney M.Hecht*
Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22901, USA

Received August 19, 1992; Revised and Accepted October 21, 1992

ABSTRACT

Large quantities of a catalytically active protein have been produced in a cell free system. More than $10^9$ copies of protein were produced from each DNA plasmid containing DNA$_{pl}$, the bacterial gene encoding dihydrofolate reductase (DHFR). The strategy employed, denoted gene amplification with transcription/translation (GATT), involves sequential coupling of (i) DNA amplification by the polymerase chain reaction (PCR) and (ii) in vitro RNA transcription by T7 RNA polymerase, followed by (iii) translation of the run-off transcripts in a rabbit reticulocyte system. The protein product had the expected size (18 kDa) and catalyzed the NADPH-dependent reduction of 7,8-dihydrofolic acid to 5,6,7,8-tetrahydrofolic acid as efficiently as authentic DHFR. Potential applications of the strategy include large scale production of enzymes containing synthetic amino acids and facilitation of the characterization of the function of genes encountered in genomic mapping studies.

INTRODUCTION

Since the initial report of the enzymatic amplification of β-globin genomic sequences (1,2), the polymerase chain reaction (PCR) has quickly been adapted for the implementation of a number of powerful biochemical strategies (3—6). These have included enhancement of the sensitivity of analysis of DNA sequence (7) and genetic phenomena (1,8,9) as well as the development of powerful biochemical strategies (3-6). These have included enhancement of the sensitivity of analysis of DNA sequence (7) and genetic phenomena (1,8,9) as well as the development of transcription/translation (GATT), involves sequential coupling of (i) DNA amplification by the polymerase chain reaction (PCR) and (ii) in vitro RNA transcription by T7 RNA polymerase, followed by (iii) translation of the run-off transcripts in a rabbit reticulocyte system. The protein product had the expected size (18 kDa) and catalyzed the NADPH-dependent reduction of 7,8-dihydrofolic acid to 5,6,7,8-tetrahydrofolic acid as efficiently as authentic DHFR. Potential applications of the strategy include large scale production of enzymes containing synthetic amino acids and facilitation of the characterization of the function of genes encountered in genomic mapping studies.

EXPERIMENTAL SECTION

T7 RNA polymerase, RNasin ribonuclease inhibitor and restriction endonucleases Bam HI and Pvu II were purchased from Promega; nuclease-treated rabbit reticulocyte lysate was from Promega or Amersham. E. coli JM101 was obtained from Pharmacia LKB; [3H]leucine was from ICN Radiochemicals. Nensorb-20 nucleic acid purification cartridges were from Dupont-New England Nuclear. Taq polymerase was purchased from Perkin-Elmer Cetus.

Plasmid pTZRKE, a derivative of pTZ19R (U.S. Biochemicals) encoding wild type E. coli DHFR (32) under the control of a T7 promoter, was constructed by Mr. G.Komatsoulis and generously provided by Dr. J.N.Abelson, California Institute of Technology. E. coli JM101 was transformed with pTZRKE and employed as the source of DNA.

DNA isolation

Isolation of plasmid DNA for PCR amplification was carried out by a lysozme SDS-alkali procedure (33). Freshly transformed cells were grown overnight from single colonies in 3 ml of SOC media supplemented with 100 µg/ml of ampicillin at 37°C. The culture was harvested in a 1.5-ml Eppendorf tube and resuspended in 200 µl of 50 mM Tris-HCl, pH 8.0, containing 10 mM EDTA, 200 µg/ml of lysozyme and 100 µg/ml of RNase A. After incubation at 25°C for 10 min., the solution was treated with 200 µl of 0.2 N NaOH and 1% sodium dodecyl sulfate (SDS), and mixed gently. Then 200 µl of 2.6 M KOAc (pH 4.8) was added and the mixture was centrifuged for 15 min. (12,000×g). The supernatant was phenol extracted and treated with 2.5 vol

* To whom correspondence should be addressed
PCR amplification of DNA

The PCR primers included a 20-nt (+) strand oligonucleotide (\(5^\prime\)GGCACGACAGTCTCCGAC\(3^\prime\)) complementary to a segment of pTZRKE 226–245 nucleotides upstream from DNA\(_{pad}\) and a 23-nt (−) strand oligonucleotide (\(5^\prime\)CTCTAGAGCTCCCGATAGACG\(3^\prime\)) complementary to pTZRKE 45–67 nucleotides (nt) downstream from DNA\(_{pad}\), which contains a T7 promoter followed by the DHFR open reading frame (32). These primers directed the synthesis of a duplex 791 base pairs (bp) in length. The DNA oligonucleotides were prepared on a Biosearch Model 8600 DNA synthesizer using phosphoramidite chemistry. The PCR amplification was carried out using Taq DNA polymerase, essentially as described (2). Plasmid pTZRKE was initially digested with restriction endonuclease Pvu II (to reduce non-specific product amplification), then added directly to a reaction mixture (100 μl total volume) containing 20 mM Tris-HCl, pH 8.4 (at 25°C), 1.5 mM MgCl\(_2\), 1 μM DNA primers, 200 μM dATP, dCTP, dGTP and dTTP, 50 mM KCl, 0.1% gelatin and 2 units of Taq DNA polymerase. The sample was overlaid with ~100 μl of mineral oil and subjected to 30 cycles of amplification. The temperatures and incubation times were as follows: the sample was denatured at 94°C for 4 min (1 min in subsequent cycles), cooled to 50°C for 1.5 min to anneal the primers, and heated to 72°C for 2 min for primer extension. In subsequent cycles, the extension time was increased by 3 sec cycle, and then to 9 min for the final cycle. Aliquots (5–10 μl) were analyzed by electrophoresis on a 1% agarose gel (100 V, 10 hr, 0.5 μg/ml of ethidium bromide in 90 mM Tris-borate, pH 8.0, containing 2 mM EDTA).

RNA transcription

RNA transcription was carried out as described (34) in an incubation mixture (20 or 100 μl) containing 40 mM Tris-HCl, pH 7.5, 2 mM spermidine, 6 mM MgCl\(_2\), 10 mM dithiothreitol, 10 mM NaCl, 1 unit/μl of RNasin, 500 μM ATP, CTP, GTP and UTP, and 0.5 μM of T7 RNA polymerase. An appropriate amount of Bam H1-linearized pTZRKE or amplified DNA\(_{pad}\) fragment was added as a template; some reactions also contained 500 μM of GpppG to effect capping of the RNA transcript (35). Transcription yields were monitored by inclusion of 50 μCi of cold EtOH. The crude DNA precipitate was resuspended in 10 μl of 10 mM Tris-HCl, pH 7.5, containing 1 mM EDTA. A typical preparation afforded 5–15 ng of plasmid DNA after isolation on QIAGEN-tip 20 (QIAGEN Inc.). The isolated plasmid DNA was assayed by electrophoresis on 1% agarose gels, and by restriction enzyme digestion analysis.
Figure 4. Analysis of dihydrofolate reductase produced from amplified and unamplified DNA\textsubscript{gel}. Translation of the individual mRNA's was carried out in the presence of \textsuperscript{3}Hleucine as described in the Experimental Section; the \([\textsuperscript{3}H]\)-labeled proteins were analyzed by SDS-PAGE and fluorography. Lane 1 contains \([\textsuperscript{3}H]\)DHFR produced from mRNA derived from unamplified DNA\textsubscript{gel}; lane 3 contains \([\textsuperscript{3}H]\)DHFR derived from amplified DNA\textsubscript{gel}. A control experiment that employed the product of a PCR amplification carried out in the absence of plasmid DNA produced no detectable protein band (lane 2). Proteins translated from BMV RNA were employed as molecular weight markers (kDa).

Figure 5. Production of DHFR as a function of time and RNA concentration. Time dependent production of DHFR (upper panel) was carried out using 0.25 \(\mu\)M RNA from PCR-amplified DNA\textsubscript{gel}. Production of DHFR as a function of RNA concentration (lower panel) was measured after a 90-min incubation at 30°C.

DHFR translation

DHFR translation was carried out in a reaction mixture (30–50 \(\mu\)l total volume) that typically contained 58% leucine-depleted, nucleotide-treated rabbit reticulocyte lysate, 40 \(\mu\)M amino acids except leucine, 12–18 \(\mu\)M [\textsuperscript{3}H]leucine (110 Ci/mmol), 20 \(\mu\)M unfractioned \(E\).\textit{coli} tRNA's, 1 unit/\(\mu\)l of RNasin ribonuclease inhibitor and 0.1–3.3 \(\mu\)M unpurified transcription reaction mixture. The reactions were incubated at 30°C and (5–10 \(\mu\)l) aliquots were removed for analysis of \([\textsuperscript{3}H]\)-labeled proteins by SDS-PAGE (16.5% acrylamide, 0.1% SDS) (36) and fluorography (37).

Translation of the RNA transcript was also carried out in the presence of \([\textsuperscript{35}\text{S}]\)methionine in order to enhance the detection of other proteins elaborated by rabbit reticulocyte lysate. The reaction mixture (50 \(\mu\)l total volume) included 40 \(\mu\)l of lysate and ~5 \(\mu\)l of unpurified transcript in addition to \([\textsuperscript{35}\text{S}]\)methionine at a final concentration of 0.8 mCi/ml. Following incubation at 30°C for 1 hr, a 10-\(\mu\)l aliquot was treated with methotrexate-agarose for 1 hr at 25°C. The recovered resin was washed four times with water, then heated in the presence of SDS-gel loading buffer (50 mM Tris-HCl, pH 6.8, containing 100 mM dithiothreitol, 2% SDS, 0.1% bromophenol blue and 10% glycerol) at 100°C for 5 min for SDS-PAGE analysis. The supernatant, and an aliquot of the reaction mixture not treated with methotrexate-agarose, were denatured in the same fashion prior to SDS-PAGE analysis.

RESULTS AND DISCUSSION

DHFR plays an important role in the biosynthesis of DNA, some amino acids and numerous cellular metabolites (38–40). Characterization of the enzyme has been facilitated by its small size (~18 kDa), water solubility, lack of post-translational modifications, and propensity to fold into its catalytically active form. DHFR can also be isolated readily and assayed for catalytic function with facility (41–43). In the aggregate, these properties made DHFR an excellent candidate for overexpression in a cell free system.

Plasmid pTZRKE encoding the \textit{Escherichia coli} DHFR gene (fol) (32), prepared from approximately 10\textsuperscript{7} cells by a
microscale procedure, gave ample DNA (~5–15 μg) for the studies described here. Specific amplification of the fol gene was achieved by the use of primers complementary to oligonucleotide sequences that flank the desired gene. After 30 cycles of PCR (2), the amplified DNA was analyzed by electrophoresis on a 1% agarose gel containing ethidium bromide. As shown in Fig. 2, a band corresponding to the amplified DNAfol (791 bp) was readily apparent and increased in rough proportion to the amount of plasmid DNA initially present. Approximately 10⁹–10¹⁰ copies of DNAfol were obtained for each DNA plasmid employed in these incubations; PCR amplification was maximally (70–85%) efficient when 1–10 ng (0.4–4.0 fmole) of template was employed. The amplified DNA was used directly for transcription of RNA.

Linearized plasmid pTZRKE DNA and amplified DNAfol were compared for their abilities to direct the synthesis of the expected 597-nt RNA transcript. As shown in Fig. 3, both templates produced RNA products of the same length (lanes 2–4). Quantification of the RNA transcript indicated that ~1.2×10⁶ copies of RNA had been produced from each of the plasmid DNA's originally utilized for amplification. In other experiments (not shown), the mRNA/plasmid DNA ratio was about 70-fold better (i.e., ~10⁹ copies of RNA for each plasmid DNA). The RNA transcript prepared from the PCR-amplified DNA was used directly for translation of DHFR.

The RNA's produced by in vitro transcription were compared for their abilities to direct the synthesis of DHFR in a cell free protein biosynthesizing system. We employed a nuclease-treated rabbit reticulocyte lysate system for its sensitivity to added mRNA, favorable rate of protein synthesis, absence of extraneous reactions, and stability of mRNA and elaborated protein (44). The results are illustrated in Fig. 4, for an experiment that employed 0.25 μM mRNA derived either from linearized pTZRKE DNA, or from the PCR-amplified plasmid, in the presence of [³H]leucine. Fluorography of the SDS-PAGE revealed the presence of a single band having the mobility expected for DHFR. That both incubations afforded the same amount of product was determined both from the intensities of the bands in the fluorograms, and by determination of radioactivity in the appropriate gel slices. The abilities of the derived proteins to catalyze the NADPH-dependent reduction of 7,8-dihydrofolic acid to 5,6,7,8-tetrahydrofolic acid were also assayed (39); the putative DHFR's catalyzed this transformation essentially as well as DHFR isolated from E.coli (41–43), when the amount of synthesized DHFR was calculated from its [³H]leucine content, assuming 11 leucines per DHFR (32). Quantification of some of the data is presented in Table 1.

Although PCR-amplified DNA has been reported to contain inhibitors that can affect translation of the derived RNA (20,45), and the ultimate polypeptide products have been shown to include incomplete or degraded proteins, no problems of this type were noted in the present study. In contrast, the crude DNA preparations employed here could be amplified readily by PCR, and underwent in vitro transcription in the presence of T7 RNA polymerase. The resulting RNA transcripts produced DHFR preparations of comparable yield and quality whether or not they were purified prior to in vitro translation.

Because the initial translation experiments resulted in the synthesis of only 0.4–0.5 DHFR/RNA transcript, we attempted to improve translational efficiency. Investigation of the RNA concentration dependence of DHFR synthesis (Fig. 5, lower panel), indicated optimal protein production in the presence of 0.5 μM mRNA, an effect noted consistently in replicate experiments. Although polyamines and Mg²⁺ have been reported to improve both the level and fidelity of cell free protein synthesis (44,46) we observed no effect of added spermidine (≤1 mM) or Mg²⁺ (≥0.8 mM), although higher concentrations of either decreased the extent of DHFR synthesis. Under optimal conditions, the production of DHFR proceeded steadily over a period of 90 minutes, affording a product that was stable in the incubation mixture for at least 9 hours (Fig. 5, upper panel).

The mRNA cap structure m⁷G(S')N has been reported to enhance the extent of protein biosynthesis in eukaryotic systems (17,47–50); this structure facilitates ribosome binding during the initiation phase of translation, and stabilizes the mRNA against 5'-exonucleases. When amplified DNAfol was transcribed in the presence of m⁷GpppG (35), a capped mRNA was obtained. Subsequent translation of this capped mRNA resulted in protein synthesis several-fold greater than that obtained using unmodified mRNA (Table 1). Optimal translation of a portion of the capped mRNA at 0.025–0.10 μM mRNA (cf Fig. 5 for the uncapped mRNA) yielded up to 31 DHFR molecules per mRNA, equivalent to ~3×10⁶ copies of catalytically competent DHFR per original fol gene copy isolated from E.coli cells.

To further characterize the synthesized DHFR, translation was carried out in the presence of [³⁵S]methionine, which enhanced the visualization of proteins elaborated in parallel with DHFR. As shown in Fig. 6, admixture of a quantity of methotrexate-agarose to the reaction mixture resulted in the selective binding of a single protein, subsequently shown to co-migrate with authentic DHFR after removal from the methotrexate affinity resin (lane 3). The binding of authentic DHFR to this affinity resin (51) provides further evidence that the DHFR synthesized in this study is functional.

It is anticipated that the GATT procedure can be used for the elaboration of many gene products in vitro, especially where the proteins of interest lack post-translational modifications, and fold into their native forms with reasonable facility. The GATT procedure should be applicable to a wide variety of molecular cloning/mutagenesis strategies. For example, had the pTZRKE fol gene not contained the T7 promoter, it would have been possible to have designed the PCR primers so that it was added to the S' end of the coding sequence as a result of the PCR reaction. As another example, deletion mutants could easily be constructed by targeting a portion of the gene, rather than the full length gene, and by adding the T7 promoter to that portion along with an appropriate ribosome binding site. Other possible enhancements of the present technology might include the use of a coupled transcription-translation system (27) or the continuous flow system described by Spirin et al. (52) for enhancing protein synthesis in vitro. In addition to supporting a strategy for the elaboration of proteins containing synthetic amino acids at defined sites (21–29), the availability of an efficient method for protein elaboration in vitro may facilitate the production of certain proteins (e.g. cytotoxic species, proteins that form inclusion bodies) which cannot readily be overexpressed in intact cells.

It may be noted that the extent of amplification realized in these experiments would in principle allow the biochemical expression/characterization of a single gene product from a few μg of total prokaryotic genomic DNA. Such technology may also prove useful in facilitating the characterization of gene products (53) from very large fragments of genomic DNA cloned in artificial chromosome vectors.
ACKNOWLEDGEMENTS

We thank Dr. John Abelson and Mr. George Komatsoulis, California Institute of Technology, for the plasmid containing DNAota. This work was supported by NIH Research Grant GM43328, and by an NIH Postdoctoral Fellowship (GM13651) to E.R.

REFERENCES