Errata

Species-specific differential cleavage and polyadenylation of plasminogen activator inhibitor type 1 hnRNA by P.G. Fattal and J.J. Billadello

The publishers wish to apologize for the omission of text from the Abstract that accompanies this paper. The complete Abstract is reprinted below.

ABSTRACT

Plasminogen activator inhibitor type 1 (PAI-1) is the primary physiologic inhibitor of the naturally occurring plasminogen activators. In higher primates two forms of mature PAI-1 mRNA (3.2 kb and 2.2 kb) arise by alternative cleavage and polyadenylation of PAI-1 hnRNA which is regulated in a tissue-specific fashion in humans. In other mammals only the 3.2 kb mRNA has been detected. The putative downstream polyadenylation site in humans that gives rise to the 3.2 kb PAI-1 mRNA consists of three overlapping copies of the consensus polyadenylation sequence while no consensus polyadenylation sequence is found upstream at a position that could generate the shorter mRNA species. To determine whether differential cleavage and polyadenylation of PAI-1 mRNA is due to species-specific differences in trans-acting factors that process PAI-1 mRNA or to the presence of a nonconsensus polyadenylation site acquired recently during primate evolution we prepared plasmids in which the 3' nontranslated region of the human PAI-1 gene or the mouse PAI-1 cDNA was inserted downstream of the neomycin resistance gene in the plasmid pSV2neo. We show that the 3'-nontranslated region of the human PAI-1 gene but not the mouse PAI-1 cDNA conferred alternative cleavage and polyadenylation to the neomycin gene in transfected human Hep G2 cells as well as mouse NIH3T3 and rat L6 cells.

Identification of proteins that interact with CREB during differentiation of F9 embryonal carcinoma cells by N. Masson, H.C. Hurst and K.A.W. Lee

The publishers wish to apologize for an error during translation of this paper which resulted in the greek letter μ being replaced by 'm' in several instances throughout this paper. The entire article is reprinted overleaf.