Quantitative sequence-activity models (QSAM)—tools for sequence design

Jörgen Jonsson, Torbjörn Norberg¹, Lena Carlsson¹, Claes Gustafsson¹ and Svante Wold
Research Group for Chemometrics, Department of Organic Chemistry and ¹Department of Microbiology, University of Umeå, S-901 87, Umeå, Sweden

Received May 18, 1992; Revised and Accepted December 29, 1992

ABSTRACT
Models have been developed that allow the biological activity of a DNA segment to be altered in a desired direction. Partial least squares projections to latent structures (PLS) was used to establish a quantitative model between a numerical description of 68 bp fragments of 25 E.coli promoters and their corresponding quantitative measure of in vivo strength. This quantitative sequence-activity model (QSAM) was used to generate two 68 bp fragments predicted to be more potent promoters than any of those on which the model originally was based. The optimized structures were experimentally verified to be strong promoters in vivo.

INTRODUCTION
We are here concerned with the relation between the composition of a DNA sequence and its associated biological activity. The analysis of sequence data has traditionally been concentrated on qualitative pattern recognition (i.e. classification). This involves, for example, models that are based on the observed similarity (i.e. homology) between sequences (1–5). Homology based models have also been used in attempts to model the magnitude of functional properties of sequences (6). Such models have, however, been criticized for being of limited predictive value (7, 8). Here we aim to demonstrate that sequence data may carry two complementary pieces of information. The first part is the homology, i.e. information related to absence of variation. The second, less well recognized information is that conveyed by systematic variation. For quantitative correlations in a class of related sequences, the information based on systematic variance must also be extracted and utilized.

The reason that potential co-variance structures are usually not considered is that the potential of multivariate methods like e.g. principal components analysis (PCA), partial least squares projections to latent structures (PLS) and neural networks (NN), for sequence modelling purposes has not been recognized until recently (9–11). NN have successfully been used to classify digitized DNA sequences, see e.g. (12–14). The applicability of PLS to quantitative sequence-activity modelling (QSAM) has been addressed by us in earlier papers (10, 14–16). It is thus important to distinguish between QSAM and classical sequence pattern recognition modelling (see refs. above). In the present context the QSAM is developed within a class of functionally related sequences. The objective is to delineate the relationship between the sequences and the magnitude of their corresponding biological activity.

The aim of this paper is, however, not primarily to design a strong bacterial promoter. The objective is rather to outline a general strategy whereby the relationship between the composition of a bio-polymer and its biological activity may be quantitatively described and subsequently utilized. It should be noted that models of the category presented here are local linearizations of the more complex functions underlying the biological phenomena observed. Consequently, QSAMs are of local validity, i.e. interpretations and predictions relate to the experimental conditions used to characterize the set of sequences upon which the models are based.

Parametrization of DNA sequence
A numerical representation of the sequence is a prerequisite for quantitative modelling. One possibility is to use a qualitative (discrete) parametrization of the monomers. This corresponds to the use of indicator variables that unequivocally and symmetrically state the identities of the relevant monomers. This implies that a minimum of three descriptor variables/base must be used in order to obtain an informationally efficient representation for DNA (see refs. 10 and 12). Another alternative is given by quantitative monomer parameters, i.e. continuous variables, such as principal properties (PPs) derived from measured physico-chemical data collected for monomers of interest (15, 16). These two kinds of descriptors have different advantages. The qualitative indicator variables are conceptually simpler, easier to derive and more readily interpreted. Properly derived quantitative descriptors may, however, enable an interpretation in terms of which physico-chemical factors that are important for the biological response and how they combine etc. In this example we have utilized four discrete indicator variables to represent the bases of DNA (A=1000, C=0100, G=0010 and T=0001). The reason for this selection is that the resulting model parameters are the least complicated to interpret.

Promoter sequence data
Prokaryotic transcriptional promoters are specific DNA sequences that are recognized by the a-unit of the RNA polymerase holoenzyme (RNAP). The assembled enzyme complex
subsequently initiates and carries out the transcription of mRNA from the DNA template. There are many examples of sequences known to be functional *E. coli* promoters. Some originate from the bacterium itself, others from infecting phages. Few of these promoters have been consistently characterized with regard to their *in vivo* promoter strength. However, a system that allows this efficiency parameter to be determined relative to an internal standard has been developed and used to characterize promoters by Bujard and coworkers (5, 6, 15-17). In this assay the strength of the test promoter (in front of the hydrofolate reductase gene, *dhfr*) is expressed relative to that of the promoter for β-lactamase (*p$_{bla}$*) which is present on the same plasmid. Monitoring of the mRNA expressed from the promoter under study in relation to the standard, permits the relative promoter efficiency to be determined unbiased by translational effects or gene dosage. These data were considered to be comparatively well suited for the standard, permits the relative promoter efficiency to be determined unbiased by translational effects or gene dosage. The present models are hence based on promoters having similar distances between the positions -35, -10 and +1 this, consequently, makes each position of the 68 mer to be more directly comparable. From references (5, 6, 15-17), the 68 bp fragment (-49 to +19) relative to the start of transcription was compiled. All promoters having a 17 bp spacer between -35 and -10 region and a 7 bp spacer between -10 and +1 region were considered. This subset comprising 25 promoters was found to comprise three major categories: 1) *P$_{D/E20}$*, *P$_{G25}$*, *P$_{J5}$* and *P$_{N25}$* from phage T5, 2) *P$_L$* from phage lambda and, 3) *P$_{con}$* an artificial construct originally synthesized by Dobrynin et al. (18). The structures of promoters

Table 1.

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Strength (log P$_{max}$ units)</th>
<th>Promoter sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-49</td>
<td>-40</td>
</tr>
<tr>
<td>1 P$_{D/E20}$</td>
<td>1.748</td>
<td>1 ACTGCAAAAATATGTTGACACCCCTATGGGCTTTAAGATGTTACAGAGTCCAGTGGAGGCAATATTA</td>
</tr>
<tr>
<td>2 P$_{G25}$</td>
<td>1.278</td>
<td>2 GAAATAAAATAATTCTCTGTATATATATATGTTATTATGTTATTAAAGAGGAAATAAATTA</td>
</tr>
<tr>
<td>3 P$_L$</td>
<td>0.954</td>
<td>3 TATATAAAAACACTTATGTACCACTGATTGAAATTGAGATATATAGGAGTACGTAGAGTCCACCT</td>
</tr>
<tr>
<td>4 P$_{J5}$</td>
<td>1.477</td>
<td>4 CATAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>5 P$_{N25}$</td>
<td>0.895</td>
<td>5 CATTAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>6 P$_{con}$</td>
<td>1.246</td>
<td>6 CATAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>7 P$_{con}$</td>
<td>1.173</td>
<td>7 GAGTAACACAAATTTTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>8 P$_{con}$</td>
<td>1.176</td>
<td>8 CATAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>9 P$_{con}$</td>
<td>0.431</td>
<td>9 CATAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>10 P$_{con}$</td>
<td>0.903</td>
<td>10 CATAAATATATATAGTCTGCTTTAGGAAATTTTCTGCTATAATAGTACCCATATAATCTAGGAGGAGT</td>
</tr>
<tr>
<td>11 P$_{con}$</td>
<td>1.301</td>
<td>11 GGCCTGCCAGCAGTTGTCTCTGAGAATTTTTGAGAGAGGAGT</td>
</tr>
<tr>
<td>12 P$_{con}$</td>
<td>1.491</td>
<td>12 GGCCTAAAAAAGCAGTTGTCTCTGAGAATTTTTGAGAGAGGAGT</td>
</tr>
<tr>
<td>13 P$_{con}$</td>
<td>0.602</td>
<td>13 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>14 P$_{con}$</td>
<td>0.172</td>
<td>14 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>15 P$_{con}$</td>
<td>0.173</td>
<td>15 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>16 P$_{con}$</td>
<td>1.398</td>
<td>16 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>17 P$_{con}$</td>
<td>1.204</td>
<td>17 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>18 P$_{con}$</td>
<td>0.255</td>
<td>18 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>19 P$_{con}$</td>
<td>1.272</td>
<td>19 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>20 P$_{con}$</td>
<td>1.672</td>
<td>20 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>21 P$_{con}$</td>
<td>1.398</td>
<td>21 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>22 P$_{con}$</td>
<td>1.146</td>
<td>22 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>23 P$_{con}$</td>
<td>1.813</td>
<td>23 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>24 P$_{con}$</td>
<td>1.778</td>
<td>24 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
<tr>
<td>25 P$_{con}$</td>
<td>1.763</td>
<td>25 ATCCACCGCTCGTGTGGAACATATTTTTACCTGGCGGTATATAGGATTACCATACGAGGTGTAAGTGAGAGT</td>
</tr>
</tbody>
</table>

* Predicted from the two dimensional PLS model.
P_{2025}, P_{300} and P_L were, furthermore, present also as 19 different site specifically altered or mixed variants. The sequences of these 25 promoters are presented together with the respective log in vivo promoter strength in Table 1. The logarithm of the promoter strength in P_{30k}-units is used in the modelling because of the large variation in strength.

DATA ANALYTICAL METHODS

The 25 promoters in Table 1 are parametrized in each position by the four descriptor variables earlier defined, giving a 25 × 272 matrix (X). The data matrix is not presented here, but can be regenerated from Table 1 using the descriptors from above. The parametrization enables the 25 sequences to be represented as a cluster of points in a 272 dimensional hyperspace. We are here aiming at identifying the structures in this space that are correlated with the promoter efficiency. Two multivariate data analytical methods that have been used successfully to solve analogous problems are principal components analysis (PCA) for graphical visualization of data structures, and partial least squares projections to latent structures (PLS) to establish quantitative relationships. Both of these methods are well explained in the literature, see e.g. (19–22). PCA decomposes a matrix X into means (x_bar), scores (t_a), loadings (p_{ak}) and residuals (e_{ik}), according to:

\[x_{ik} = \bar{x}_k + \sum_{a=1}^{A} t_a \cdot p_{ak} + e_{ik} \]

Here the elements x_{ik} are the sequence descriptor variables with index i denoting promoters and k the sequence descriptors. The first principal component explains the largest part of the systematic variance of X, the next one the second largest part, and so on. One component (or dimension) of a PC-model thus consists of a score (column) vector t reflecting the systematics among the objects (here: sequences) times a row vector p characterizing the systematic behaviour (co-variance structures) of the sequence descriptor variables. Projection methods such as PCA and PLS summarizes most of the variation in a data matrix by a small number of derived variables, this regardless of the nature of the original variables i.e. whether they are continuous, discrete or a combination thereof (20). Moreover, as pointed out by Gower (23), the variables are combined in a way consistent with a similarity measure between objects (here: sequences) proportional to how many variables having the same values for any two objects. The number of statistically significant principal components (A) of a particular matrix is determined using cross-validation (24). This ensures that the model is not overfitted to the data, since this would severely hamper the predictive capability. The objective of cross-validation is thus to identify the number of components that provide an optimal balance between fit and predictive capabilities, in the present example A comes out to be two both for the PCA and the PLS models. Bivariate plots of the score values (t_a) from different components provide projections of the data space, wherein systematic variance based patterns may be examined. Here, PCA is used to obtain a graphical representation of the structural features of the synthetic sequences in relation to the original set of 25 promoters.

In the present application there are 272 variables (K) characterizing the structural features of 25 sequences (N). Methods like e.g. multiple and generalized regression can, therefore, not be applied since they require both that N > K and that all the variables (K) are independent (i.e. orthogonal). PLS (21, 25) is used to correlate a single dependent variable y (or a matrix Y), to the variation in a predictor matrix X. PLS is a generalization of PCA where the components of X (t_a) are calculated so that they well approximate X and correlate well with y. Since PLS is a projection method, it can handle collinear data having many more variables (sequence descriptors, K) than objects (sequences, N), as long as the resulting components (A) are few compared to N. The result is a stable approximation of the correlation between X and y. The statistical significance of PLS models is also determined by cross-validation. In this paper PLS is used to relate the promoter efficiency variable (y) to the systematic variation in the promoter sequence matrix (X, the 25 parametrized 68 mers). The interpreted model is subsequently used to generate suggestions of sequences containing the essence of the structural features characteristic of strong promoters.

Choice of model

This QSAM was attempted using both PLS and a hetero-associative back-propagation NN, the results obtained were similar. However, we only present the results from the PLS QSAM since this method was found to be advantageous for a number of reasons, namely; 1) PLS is more robust, since it does not require the proper initial setting of numerous variables (e.g. the number and size of hidden layer(s), choice of weight function(s), epoch length, etc.) which is required for the NN, 2) PLS converges to the stable solution in a matter of seconds rather than hours, 3) PLS proceeds in a fashion that allows the statistical significance of the model to be simultaneously evaluated. The risk of overfitting the model to the data is therefore minimized while the predictive capabilities are optimized, and 4) the PLS weights are more readily interpreted both in terms of which is the optimal monomer in each position, but also if quantitative descriptors are used, the physico-chemical reason(s) why a certain monomer is preferred. The interpretation of the NN QSAM was not equally straightforward irrespective of the sequence descriptors used.

Results of the PLS QSAM

Two PLS dimensions, significant according to cross-validation, accounted for 27.5% of the systematic variance of X and explained 85% of the variance in the promoter efficiency variable (y). The first PLS dimension alone used 11.5% of X to explain 73% of y, the second added an additional 16% of X and 12% of y. These results refer to autoscaled data (i.e. each variable is scaled inversely proportional to its variance), the use of unscaled data, however, gives similar results. The PLS weights were subsequently transformed into PLS regression coefficients. The relative size of these coefficients over different positions indicate their relative importance to the promoter strength. To display the influence of each position we have in Fig. 1 summed the absolute values for each group of four coefficients and corrected this number for the degrees of freedom (DOF) for each position.

From figure 1 it can be seen that positions -135 to -33, -11 and +1 are constant for all 25 promoters in this example. These positions are probably important to the promoter strength, although the magnitude of their influence cannot be assessed from the present data. Among the varying positions we see that position -12 is the most important followed by positions 4 to 14 in the downstream region, positions around -8 to -10 and position
Influence on $\lg P_{bla}$ strength

Figure 1. The influence on in vivo promoter strength of each position in the considered 68 bp fragment displayed as:

\[
\text{Position influence} = \sum_{n=1}^{\text{DOF}} \left(\left| c_n \right| / \text{DOF} \right) \times 10^n
\]

Where c are the PLS regression coefficients and DOF the degrees of freedom for each position, (the number of bases actually occurring in a particular position minus one). The correction for DOF results in a relatively larger importance given to the more conserved positions.

-38. The relatively large influence of the downstream region seems to corroborate the observation that in vivo promoter strength is dependent on more than one functional parameter (15). The importance of this region may reflect the contributions to promoter strength from ease of initiation and/or the speed of RNAP promoter clearance.

The 272 PLS regression coefficients were then examined in detail, in groups of four corresponding to the descriptors for each of the 68 positions. For each of these groups the largest positive value indicates the 'preferred' base of that particular position. An entirely synthetic sequence was thus generated by selecting the most favourable base, with respect to the model. This was made both for the one and the two dimensional PLS models. The result was two strength-optimized 68 bp sequences denoted P_{LS1} and P_{LS2}. For the homologous and close to homologous positions in the -35, -10 and $+1$ regions the PLS sequences are determined by the bases having descriptors matching the corresponding column averages (4). The P_{LS1} and P_{LS2} from the one and two dimensional QSAM were subsequently parametrized and reinserted into the model and their in vivo promoter strength was predicted, see Table 1 and Fig. 2. Promoter strength predictions from the NN QSAM were similar, (data not shown).

To visualise the sequence characteristics of these theoretical promoters in relation to those of the training set, all sequences were analyzed by PCA. The result was a significant two component model describing a total of 30% (19 and 11% respectively) of the systematic variance in the composition of the sequences. The scores from the two components are plotted in Fig. 3. The promoters of the training set are seen to be clustered according to their origin, (phage T5, phage lambda and constructs). The QSAM has thus pointed us further into the direction of strong promoters, outside the region defined by the original 25 sequences. Also in this analysis, the PC loadings show that the region downstream $+1$ is the main determinant of the patterns observed, (data not shown).

To validate the predictive capabilities of this QSAM it was subsequently decided to synthesize the promoters suggested by the model and determine their relative in vivo promoter strengths. An external reference set of six promoters ranging from weak to strong was kindly provided to us by H.Bujard and co-workers. However, since the reference promoters were found to be of different lengths, it was decided to include three versions of the reference promoters (P_{A1}, P_{DE20} and P_{Len}) having the same length and restriction sites at the positions corresponding to those of the test promoters, in order to obtain a better comparability.

EXPERIMENTAL

Vector construction

The P_{Len} insert was removed from pDS2 using $XhoI/BamHI$ and replaced by the $XhoI/BamHI$ cloning cassette fragment (containing an $EcoRI$ site) from pGEM 7zf+ (Promega), this
vector was designated pJJK1. A more thorough description of the test vector system pDS2 is given in (5).

Oligomer synthesis

The reference promoter P_{DE20} and the QSAM constructs P_{L5I} and P_{L52} were synthesised as complementary 93 mer single stranded oligo-nucleotides, containing a BamHI and a EcoRI site at the 5' and 3' ends respectively using a Beckman SM DNA synthesizer. The oligomers were collected and deprotected using the procedure recommended by the manufacturer, and thereafter purified according to (26). The 93 mers were purified on a non-denaturing 7% poly-acrylamide gel, annealed and trimmed to 75 mers by BamHI/EcoRI treatment. The double stranded promoter fragments were further gel-purified as described above. Fragments were electro-eluted from the gel and cloned into the test vector pJJK1. Oligonucleotides complementary (40 bases into the transcript) to bla (27 mer) and dfr (25 mer) were synthesised and radioactively labelled using terminal transferase (TdT) and α^{-32}P dATP (Amersham). Labelled oligonucleotides were purified on NENSORB columns (Du Pont NEN products), and used as probes in the dot-hybridization.

PCl amplification of reference promoters

Two reference promoters P_{Lon} and P_{A1}, were obtained through PCR amplification generating 93 base pair fragments containing BamHI and EcoRI sites at positions corresponding to the synthetic promoters. The double stranded fragments were enzymatically digested, gel-purified and cloned into pJK1 as described above.

In vivo promoter strength determination

All test and reference promoter constructs were transformed into E.coli C600. Reference promoter constructs were the P_{Lon}, P_{A1}, P_{bla}, P_{con} and P_{N25} in plasmid pDS2 and P_{LA1P} in plasmid pDS3. The DNA sequences of the positive transformants were confirmed by dideoxy sequencing (Pharmacia T7 sequencing kit). Bacterial cultures (50 ml) were grown as described in (5), 35 ml of the cell cultures were quickly chilled to 0°C, and the cells collected by centrifugation (1.5 min, 10krpm.). The remaining 15 ml was used to confirm sequence integrity. Cell pellets were quickly resuspended in RNA preparation buffer containing 7M urea, 3M LiCl, 0.2% SDS and 0.1% Antifoam A (Sigma), using a polytron, (10 sec, 24krpm), and RNA precipitated for 15h at 0°C. Total RNA was recovered by centrifugation (20 min, 15krpm), rapidly dissolved in 1XTE buffer containing 0.5% SDS and phenol extracted x3 followed by CHISAM (chloroform:isoamylalcohol 24:1 v/v) extraction x1. The RNA was precipitated using two volumes ethanol and 0.3M KAc (pH 4.5). The quality of the RNA preparations were verified by northern analysis, and were found to be free from contaminating plasmid DNA.

Dot blot hybridization

Each RNA preparation was divided into 10 fractions (5 aliquots for repeated determinations of test and internal standard respectively). A dot hybridization analysis using Hybond N membranes (Amersham), was performed according to principles outlined in (27). The membranes were prehybridized for 15h at 65°C in 20 ml 6XSSC, 5X Denhardt solution, 1mM EDTA, 10mM Na$_2$HPO$_4$ (pH 7.0) and 250x10$^{-6}$ g/ml of calf thymus DNA. The filters were hybridized (15h) in prehybridization solution containing 5x106 cpn/ml of radioactively labelled oligomer complementary to the bla and dfr transcripts respectively. Dot blots were washed in 2XSSC, 0.1% SDS (15 min, 65°C). The amounts of mRNA expressed by test and reference promoters relative to the internal standard were subsequently determined by liquid scintillation of a defined minimum area of the dots.

RESULTS

When the relative promoter strengths of all 11 constructs were compared, the promoters generated from the QSAM were consistently found to be the strongest, see Table 2. On a linear scale the P_{L5I} was found to be 60% and the P_{L52} 54% more efficient than the strongest reference. This is in good agreement with the predicted difference which is 68% and 66% respectively.

However, some discrepancies between the promoter efficiencies determined by us and those published earlier were found. The largest of these was displayed by the P_{LA1P}, supposedly the strongest of the eight references, which in our system was found to be among the weaker. The reason for this is largely because the signal from the internal standard P_{bla} was substantially increased probably by the tendency of this promoter to initiate a backwards transcription into the bla region. This fact unfortunately, makes all comparisons with this reference promoter impossible. The second relevant difference is that the P_{con} was identified as being a relatively strong promoter in our system, the reason for this difference is not apparent. However, it may be noted that this promoter originally was tested in a different bacterial strain (E.coli M15). It was also observed that the strength of the longer versions of the P_{A1} and the P_{con} are higher than those observed for the 68 bp versions, indicating either context effects from the sequence elements outside the 68 bp fragment, or an effect from the modification of the cloning

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>Promoter</th>
<th>Measured strength (log bla-units)</th>
<th>Literature / Predicted* strength (log bla-units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{Lon}</td>
<td>2.143</td>
<td>1.974*</td>
<td></td>
</tr>
<tr>
<td>P_{L52}</td>
<td>2.127</td>
<td>1.968*</td>
<td></td>
</tr>
<tr>
<td>P_{DE20}</td>
<td>1.939</td>
<td>1.748</td>
<td></td>
</tr>
<tr>
<td>P_{A1}</td>
<td>1.556</td>
<td>1.643</td>
<td></td>
</tr>
<tr>
<td>P_{Lon}</td>
<td>1.544</td>
<td>1.146</td>
<td></td>
</tr>
<tr>
<td>P_{A1}</td>
<td>1.707</td>
<td>1.643</td>
<td></td>
</tr>
<tr>
<td>P_{Lon}</td>
<td>1.740</td>
<td>1.143</td>
<td></td>
</tr>
<tr>
<td>P_{bla}</td>
<td>1.041</td>
<td>-0.523</td>
<td></td>
</tr>
<tr>
<td>P_{con}</td>
<td>1.897</td>
<td>0.602</td>
<td></td>
</tr>
<tr>
<td>P_{N25}</td>
<td>1.799</td>
<td>1.477</td>
<td></td>
</tr>
<tr>
<td>P_{LA1P}</td>
<td>1.107</td>
<td>1.929</td>
<td></td>
</tr>
</tbody>
</table>

Strength values for each promoter are averages based on five replicated measurements from a minimum of three different bacterial cultures. The experimental variability was generally between ±10—17% of the P_{bla} strength (linear scale). The main source of this variation was, however, due to systematic differences in the dot-blot intensity of the internal standards.
DISCUSSION

We demonstrate here the development of a nucleic acid QSAM for which the predictive capabilities have been experimentally verified. It is most encouraging that the principles of multivariate QSAM apply also here. The information that may be extracted from Table 1 is to some extent variance based; the fact that these 25 promoters differ considerably in strength cannot be explained in terms of homology. The differences between weak and potent promoters are, however, shown to be well modelled in terms of the systematic structural variation between the sequences. This variation is multi-positionally encoded and is hence analyzed accordingly. Three data analytical methods that have shown to be useful for this purpose are PCA, PLS and, to some extent, NN. The approach has general applicability for modelling the relationship between sequences (i.e. DNA, RNA and proteins) and their biological activity. The QSAMs can be interpreted in terms of important positions and regions. They can also be used to propose sequences for which the biological activity has been specifically altered.

The fact that promoter efficiency is affected by variable sequences, flanking more constant regions has earlier been demonstrated (5, 28). However, the identification and quantification of the systematic variations is usually not made. On the contrary, the homology approach aims to model variations in biological activity, in terms of a description of a local minimum of variance (the consensus regions). It has, however, been shown that consensus sequences mainly reflect the structures essential for efficient promoter recognition, but that the features determining the in vivo efficiency are less well described by homology (6). An additional drawback is that such models cannot be used to predict structures having a higher activity than those containing the 'optimal' consensus sequence. The term consensus thus is a statistical term that may not always be equated with strong or optimal (29). It is therefore suggested that homology based models are better suited for pattern recognition (i.e. classification) purposes. Knowledge about the homologous regions is, however, crucial in order to establish QSAMs.

Context (i.e. interaction) effects have also been shown to be important within consensus regions of bacterial promoters (30). The present models are linear. Interaction effects between bases are thus confounded (mixed) with the main effects from each position. The magnitudes of interaction effects may only be estimated if the alterations in a sequence are carried out according to an experimental design (i.e. D-optimal design) (31). The use of such designed sets of sequences in combination with multivariate data analysis will enable the magnitudes of both main and interaction effects for different positions to be estimated.

It was recently concluded that many subcellular processes will probably remain unintelligible unless properly quantified (32). The use of internal standards as well as external references in studies of functional parameters is therefore encouraged. This enables a better comparability of data from different sources and thereby greatly facilitate future QSAM development.

The present approach requires that the modelled sequences are of similar length. Moderate differences may be accommodated, but in the case of larger length deviations it is expected that QSAMs must be developed on a class by class basis or that sequence data is pre-treated by alignment independent sequence transformations. In the present example it was decided to include promoters of the same length since homogenous training sets are known to provide a more stable basis for predictions. We are currently developing quantitative monomer descriptors for bases occurring in DNA and mRNA, and also investigating the applicability of alignment independent transformations for sequence data. We hope to be able to report on these subjects in the near future.
ACKNOWLEDGEMENTS

This work was made possible through the Swedish Natural Science Council (NFR) grants; B-BU 4875-311, B-BU 2930 and K 3174-306. The generous support from Prof. Thomas Edlund and Prof. Glenn Björk, Department of Microbiology, University of Umeå is hereby gratefully acknowledged.

REFERENCES