Analysis of the imperfect octamer-containing human immunoglobulin \(V_H^6\) gene promoter

Zijie Sun and Geoffrey R. Kitchingman*
Department of Virology and Molecular Biology, St Jude Children’s Research Hospital, 332 N Lauderdale Street, Memphis, TN 38101-0318, USA

Received August 17, 1993; Revised and Accepted December 17, 1993
GenBank accession no. L07386

ABSTRACT

The octamer sequence ATGCAAAT is highly conserved in the promoter of immunoglobulin heavy and light chain genes and is one of the sequence motifs involved in the control of transcription of these genes. The promoter region of an human immunoglobulin heavy chain variable gene, the sole member of the \(V_H^6\) gene family, was found to differ from other \(V_H\) gene promoters: It contains neither the conserved octamer motif nor a heptamer sequence, and generally bears little resemblance to other \(V_H\) gene transcriptional control regions. An imperfect octamer sequence with a single nucleotide substitution (AgGCAAAT) is located 108 bp upstream of the ATG translation start site, and 81 bp upstream of the transcription initiation site. We sought to determine which sequence elements within the \(V_H^6\) promoter were responsible for transcription initiation by creating progressive deletions of a 1 kb fragment from this region and testing their ability to function as promoter elements in B and non-B cells (HeLa). The minimum fragment required for full promoter function was 110 bp, but a fragment with only 65 bp retained 30 – 50% activity in B cells. Similar levels of transcription were seen when the –146 bp promoter containing two point mutations in the Imperfect octamer was tested. Mutation of a possible pyrimidine box sequence located downstream of the TATA box was shown to have only a minor effect (10-30%) on transcription when three nucleotides were changed. Surprisingly, CAT activity was not B cell-specific, as all constructs had virtually the same activity in several B cell lines and in HeLa cells. Removal of the TATA box led to a 50% reduction in CAT activity, and the region upstream of the TATA box functioned as a promoter in both orientations. The transcriptional activity of the \(V_H^6\) promoter was virtually enhancer independent: only a minor increase was observed when the immunoglobulin or SV40 enhancer was added to the promoter construct. Electrophoretic mobility shift assays of transcription factor binding to the region around the imperfect octamer indicated that binding was weak when nuclear extracts from either B cells or HeLa cells were used. The amount of complex shifted was increased by mutating the imperfect octamer to a perfect one. Chimeras produced between the \(V_H^6\) promoter and a B cell-specific promoter from a member of the human \(V_H^2\) gene family demonstrated that the lack of tissue specificity was due to the absence of a repressor of non-B cell transcription in the \(V_H^6\) promoter. These results indicate that the \(V_H^6\) promoter is relatively simple, requiring little more than the TATA element and the imperfect octamer, and transcription from this promoter lacks B cell specificity and is not dependent on the enhancer element.

INTRODUCTION

Immunoglobulin (Ig) genes are assembled from a series of discontinuous germline gene segments that are juxtaposed during B lymphocyte differentiation (1–3). For the human Ig heavy chain genes, several hundred variable (\(V_H\)) region gene segments (4), at least twenty diversity (D) region gene segments (5), and six functional joining (J\(H\)) region gene segments contribute to the generation of a diverse repertoire of antigen combining sites. Additional diversity can be added through the addition or deletion of nucleotides at the D-J\(H\) and V\(H\)-D junctions. \(V_H\) gene sequences can be grouped into different families based on amino acid or nucleotide similarity (4, 6, 7), and seven human \(V_H\) gene families have been identified recently (4, 6). Members of each family are at least 80% or more identical at the nucleotide level. The \(V_H^6\) family contains a single member and is the \(V_H\) gene segment most proximal to the heavy chain D gene region. It is also thought to be first \(V_H\) gene used in ontogeny and it contributes significantly to the fetal heavy chain repertoire (8).

\(V_H\) gene transcription is controlled by a cell type-specific regulation mediated through the interaction of sequence-specific DNA binding proteins with cis-acting elements (9–13). The Ig heavy chain genes contain two cell type-specific regulatory elements that function independently to promote transcription: the enhancer and promoter regions (14–19). The human heavy chain enhancer is a relatively large region of about 400 bp located...
between J_H and the mu switch region, and includes binding sites for specific proteins that act as activators or, perhaps in some cases, as repressors of transcription (20, 21). Human Ig heavy chain gene promoters are relatively short stretches of DNA that extend about 150–200 bp upstream of the transcription initiation site and contain several cell type-specific transcriptional elements (16, 22–27). One of these elements is the octanucleotide sequence, 5'-ATGCAAAT-3', and its precise inverse. This sequence is found in virtually all sequenced V_H and Ig light chain (V_L) gene promoters (25, 28). In vivo and in vitro analyses have shown that this element is required for tissue-specific promoter function (23, 24, 29). A second conserved sequence motif in Ig heavy chain gene promoters, 5'-C-TCATGC-3' (referred to as the heptamer element), is located between 22 to 22 bp upstream of the octamer element and is required for the full lymphoid cell-specific activity of several immunoglobulin V_H promoters (26,3 0). The octamer element is also a functional component of the Ig heavy chain gene enhancer and several non-immunoglobulin gene promoters (13, 31–33). Studies using gel mobility shift assays and DNase I or methylation interference footprint assays have shown that there is a family of transcription factors capable of binding to the octamer motif. Two of these factors, Oct-1 and Oct-2, have been studied in considerable detail (30, 34). Oct-2 is a ubiquitous octamer-binding factor that has been found in all mammalian cells analyzed thus far (35–39), while Oct-2 has been found only in B cells and is considered the octamer-binding protein responsible for cell type-specific transcription of Ig genes (39–43). Recently, it has been shown that the specificity of transcriptional activation by Oct-1 and Oct-2 is determined by the combination of multiple functional domains (39, 44–46).

Mutagenesis experiments have shown that the octamer sequence is an essential component of the immunoglobulin promoter (23, 27, 29). Promoter constructs containing a single octamer in front of a TATA box are preferentially transcribed in vitro (23, 24, 29). Promoter constructs containing a single sequence is an essential component of the immunoglobulin enhancer and several non-immunoglobulin gene promoters (13, 27). Binding of Oct-2 to its recognition sequence is an essential component of the immunoglobulin enhancer and several non-immunoglobulin gene promoters (13, 31–33). Studies using gel mobility shift assays and DNase I or methylation interference footprint assays have shown that there is a family of transcription factors capable of binding to the octamer motif. Two of these factors, Oct-1 and Oct-2, have been studied in considerable detail (30, 34). Oct-2 is a ubiquitous octamer-binding factor that has been found in all mammalian cells analyzed thus far (35–39), while Oct-2 has been found only in B cells and is considered the octamer-binding protein responsible for cell type-specific transcription of Ig genes (39–43). Recently, it has been shown that the specificity of transcriptional activation by Oct-1 and Oct-2 is determined by the combination of multiple functional domains (39, 44–46).

Mutagenesis experiments have shown that the octamer sequence is an essential component of the immunoglobulin promoter (23, 27, 29). Promoter constructs containing a single octamer in front of a TATA box are preferentially transcribed in B cells (22, 27). Binding of Oct-2 to its recognition sequence is highly specific, as oligonucleotides containing single base pair changes within this sequence compete very poorly or not at all for binding (47).

Because the V_H6 promoter is the first heavy chain variable region promoter activated during ontogeny, and differs so markedly from other V_H promoters, we speculated that unique elements might be involved in controlling transcription of this gene. Through a series of deletion mutants, we determined the minimal requirements for promoter activity, and found that the V_H6 promoter is virtually enhancer-independent and lacks cell type specificity.

MATERIALS AND METHODS

Cell lines

Three human B cell lines were used. Nalm-1, a human acute lymphoblastic leukemia (ALL) pre-B-cell line that expresses CD10, CD20, CD24 and cytoplasmic Ig (clg) and contains a functionally rearranged V_H4 gene family member (48). ML-1 is an Epstein–Barr virus (EBV)-transformed human early B cell line that expresses surface Ig (slg) with the heavy chain being from the V_H6 gene family (49). REH cells are a pre-B cell line with only heavy chain gene rearrangement (50). As a non-B cell line control we used a human cervical carcinoma cell line, HeLa. Nalm-1 and ML-1 were propagated in RPMI 1640 containing 20% fetal calf serum, 50 μM β-mercaptoethanol, 0.03% glutamine and antibiotics. REH cells were grown in RPMI 1640 with 10% fetal calf serum; HeLa cells were grown in Joklik modified S-MEM (GIBCO) with 10% fetal calf serum.

Construction of plasmids

The genomic clone, M2, containing a rearranged V_H6 gene and 1 kb of sequence upstream of the transcription start site, was isolated from a lambda library from a patient with ALL (51). A 1 kb fragment containing nine nucleotides upstream of the V_H6 gene transcription initiation site was cloned into pBluescript II KS(+) (Stratagene) as an EcoRI to HindIII fragment, and sequenced with Sequenase 2.0 using protocols supplied by the manufacturer (US Biochemical). This fragment was then transferred into the pCAT-Basic plasmid (Promega). A 515 bp fragment of the human Ig heavy chain enhancer was synthesized with oligonucleotide primers containing BamHI sites by the polymerase chain reaction, using the M2 clone as a template. Following digestion with BamHI, the fragment was ligated into the BamHI site downstream of the CAT reporter gene in the same plasmid (Fig. 1).

Deletion mutants were constructed using the exonuclease III/mung bean nuclease procedure (52). BstXI and NheI sites located at the 5' end of the V_H6 promoter fragment were used to prepare the plasmid for ExoIII treatment. Deletion mutants containing 980, 810, 562, 505, 390, 299 and 146 bp of upstream sequence were initially isolated. Large scale growth of these plasmids and CsiI purification were as described (53). The 308 bp deletion of the promoter was constructed by digesting with SalI, which cuts in the polylinker adjacent to the HindIII site at the 5' end of the upstream sequences and again at nucleotide -316, followed by recloning into the SalI site of the polylinker of the CAT plasmid with the Ig heavy chain enhancer. Constructs containing 110, 84, 70, 65 and 39 bp of upstream sequence were produced by PCR amplification of these regions with oligonucleotide primers, cloning into a pBluescript-derived T-vector (54), and then moved into the pCAT plasmid. The 78 bp promoter fragment from -66 to -144 was prepared in a similar fashion. Many of the same promoter constructs were also inserted into a CAT expression plasmid containing the SV40 enhancer (Promega).

Point mutations were produced using a PCR-based mutagenesis scheme (17). The imperfect octamer was mutagenized to one with a 5 of 8 match to the perfect octamer by using sets of primers containing two nucleotide changes in conjunction with upstream and downstream primers. A similar strategy was used to mutate the pyrimidine box sequence from a 10/12 match to one with a 7 of 12 match. The following primers were used:

5/8 octamer
5'-AAAGTGCACACACACGGCTGAGTTGTTT-3'
7/12 pyr box
5'-TGTAGCAGCCGGGCGCAGAACTGCA-3'
5' upstream
5'-ATGATTACGGCCAAGCTTT-3'
3' downstream
5'-GCTCAGATCCCTCTAGA-3'

These primers were used to synthesize two PCR fragments separately, which were then mixed, denatured, and filled in with the Klenow fragment of DNA polymerase I. The resulting fragment was then amplified using the outside primers. The mutated DNA fragments were then digested with HindIII, and cloned into the pCAT-Basic plasmid.

The V_H2 promoter fragment was originally isolated from a genomic clone termed M8 (51). A 226 bp fragment starting at the translation start site was cleaved at NcoI sites, converted to
Transfection of plasmid DNA was carried out by electroporation. The electroporation procedure was modified from a previous report (10) and the fragment was then transferred into the pCAT-Basic plasmid which had been modified to contain a 515 bp fragment of the human IgH enhancer. Chimeric promoters were generated using PCR. All constructs were sequenced to ensure that no misincorporation occurred during amplification.

DNA transfection

Transfection of plasmid DNA was carried out by electroporation. All transfections were carried out with 20 µg of test plasmids and 10 µg of a reference plasmid expressing β-galactosidase (Promega) as an internal control, unless otherwise indicated. The electroporation protocol was performed using the Cell-porator (BRL), with the voltage and capacitance set at 250 V and 800 µF. Twenty-four hours after electroporation, cells were collected by centrifugation and resuspended at a concentration of 1 x 10^7 cells per 250 µl per cuvette. Electroporation was performed using the Cell-porator (BRL), with the voltage and capacitance set at 250 V and 800 µF. Twenty-four hours after electroporation, cells were collected by centrifugation and resuspended twice with phosphate-buffered saline, and lysates prepared by freezing and thawing. Cell lysates were centrifuged for 10 min at 14 000 rpm at 4°C, and the supernatant used for the CAT assay.

CAT assays

CAT assays were carried out as described by Gorman (53). We added 5 µl of 35 mM acetyl-coenzyme A and 1 µl of 25 µCi/ml 14C-chloramphenicol to 80 µl of cell extract, and incubated for 5 h at 37°C. After ethyl acetate extraction and evaporation to dryness, samples were resuspended in 20 µl of ethyl acetate and spotted onto a TLC plate. After chromatography, the dried plates were autoradiographed using Kodak XAR film and intensifying screens (DuPont). For quantification, bands were cut out and counted. Results represent the mean activity of 2–4 independent experiments. β-galactosidase levels were measured using ONPG as a substrate.

Gel mobility shift assay

Oligonucleotides used for the mobility shift assay were 44 bp fragments, located between -110 and -67 in the V_{6-70} promoter (6). The wild-type probe contained an imperfect octamer with the sequence AGGCAAAT, and the mutant oligonucleotide contained a perfect octamer (ATGCAAAT). The fragments were generated by PCR amplification. Prior to protein binding, the primer was end-labeled using [γ-32P]-ATP and polynucleotide kinase. The gel shift assay was performed essentially as described by Singh et al. (37). Each assay contained 12 µg of crude nuclear extract with 2 µg of poly(dI-dC)poly(dI-dC) and 1 x 10^6 cpm of [32P]-labeled DNA fragment in 20 µl of a buffer containing 20 mM HEPES (pH 7.9), 50 mM KCl, 5 mM EDTA, 1 mM DTT, 3 mM MgCl2, and 5% glycerol. After a 20 min incubation at room temperature the binding reaction was loaded onto a 4% polyacrylamide gel (20:1 acrylamide to bisacrylamide) in 0.25 x TBE buffer, and electrophoresed at 5 V/cm for 4 h at room temperature. The gels were then dried and autoradiographed using Kodak XAR film in the presence of Dupont Lightning Plus intensifying screens.

RESULTS

We previously cloned the V_{H}-D-J_{H} region of a rearranged Ig heavy chain gene containing the V_{6-70} gene segment from a patient with ALL (51). To identify elements required for transcription of this gene, we sequenced a fragment containing the region from -1024 to +51 relative to the transcription initiation site. The first 148 bp upstream of the transcription initiation site had previously been sequenced by Perlmuter and colleagues (6), and our sequence through this region is identical to theirs. A 1 kb fragment of the promoter region, from -8 to -1024, was then subcloned into the pCAT expression vector which also contained the human Ig heavy chain gene enhancer located downstream of the CAT coding region (Fig. 1). A series of 5' deletion mutants was constructed using this plasmid as a starting point, with the smallest promoter fragment in this series containing 146 bp of upstream sequences (Fig. 2A).

The CAT activities of the various constructs following electroporation into three B cell and HeLa cells are shown in Fig. 2B. The wild-type and 7 deletion mutants all promoted similar levels of CAT activity in HeLa, Nalm-1 and REH cells, and nearly comparable levels in ML-1 cells. The V_{6-70} promoter is a relatively strong one, as the levels of CAT expression were often greater in some cell lines than that promoted by the SV40 promoter/enhancer CAT construct that we used as a positive control for these experiments. Promoter activity was ablated when sequences from -8 to -316 were deleted (ΔV_{6-70-700}/Imm). The high level of CAT expression under the control of the V_{6-70} promoter in combination with the Ig heavy chain enhancer in HeLa cells indicates that this combination did not confer B cell specificity. One of the rationales for using a variety of B cell lines was that the V_{6-70} promoter is different in architecture from other human Ig heavy chain promoters, and this might require a unique set of transcription factors for maximal transcription, and that only B cells expressing this gene would contain this set. The results shown in Fig. 2B would argue against this possibility.

Figure 1. Structure of the CAT plasmid containing the immunoglobulin V_{6-70} heavy chain gene promoter and heavy chain enhancer A 1011 bp promoter fragment of the human Ig V_{6-70} gene was inserted upstream of the CAT gene in the pCAT-Basic plasmid (Promega). A 515 bp fragment of the human Ig heavy chain enhancer was inserted downstream of the CAT gene. This plasmid was used to derive promoter deletion mutants.
The 146 bp sequence element located upstream of the transcriptional start site in the \(V_H^6 \) gene was as strong a promoter as the \(1 \text{ kb} \) fragment. Upstream of the TATA box there are several potential binding sites for transcription factors, and a potential pyrimidine box (56, 57) is located immediately downstream of the imperfect octamer (Fig. 3A). To address the importance of these sites for transcription of the \(V_H^6 \) gene, a second series of deletion mutants was constructed using a PCR-based technique. In the \(V_H^6-110/\text{Imm} \) construct, a potential transcription factor binding site that resembles one found in mouse immunoglobulin gene promoters (56, 57) that is necessary for an imperfect octamer to function as an efficient promoter. While this region is found upstream of the imperfect octamer in the two mouse promoters, but still might be required for transcriptional activity of the human \(V_H^6 \) promoter. Three nucleotides in the pyrimidine box were changed in the \(V_H^6-146\text{Mu/Imm-CAT} \) construct relative to the wild-type promoter (Fig. 4A). These changes produced a 10% reduction in promoter activity in the HeLa cells. Reduction seen in the B cell lines was more drastic than would have been predicted from the deletion mutants, whereas the slight decrease seen with HeLa cells is consistent with the deletion mutant studies.

The pyrimidine-rich region immediately downstream of the TATA box in the \(V_H^6 \) promoter resembles a sequence in several mouse immunoglobulin gene promoters (56, 57) that is necessary for an imperfect octamer to function as an efficient promoter. While this region is found upstream of the imperfect octamer in the two mouse promoters, but still might be required for transcriptional activity of the human \(V_H^6 \) promoter. Three nucleotides in the pyrimidine box were changed in the \(V_H^6-146\text{Mu/Imm-CAT} \) construct relative to the wild-type promoter (Fig. 4A). These changes produced a 10% reduction in promoter activity in the HeLa cells and a 10-30% reduction in the B cell lines (Fig. 4C). These data indicate that the pyrimidine-rich region in the \(V_H^6 \) promoter plays a small role in the activity of this promoter.

Most Ig promoters require the presence of enhancer elements to confer maximal activity (24). To determine if this is true for
the \(\text{VH}_6 \) promoter, we constructed a series of plasmids containing the 146 bp promoter fragment with either the Ig, SV40 or no enhancer. CAT expression was measured in ML-1, Nalm-1 and HeLa cells. The results showed the \(\text{VH}_6 \) promoter to be very active even without an enhancer element (\(\text{VH}_6-146/0 \)); substitution of the SV40 enhancer element had little effect on CAT activity (Fig. 5). As with the previous experiments, the relative activity of the enhancer constructs was not restricted to B cells.

To determine the nature of the complexes formed on a minimal \(\text{VH}_6 \) promoter element, we performed gel mobility shift assays using an oligonucleotide centered around the imperfect octamer (Fig. 6A). The 44-mer from the wild-type promoter (\(\text{VH}_6-44\text{WT} \)) bound very poorly to crude nuclear extracts from both B cells and HeLa cells (Fig. 6B). A similar set of bands was found with each of the four extracts, although the intensity of the bands differed significantly. For example, complex formation was minimal with the extract from ML-1 cells, but readily detectable when extracts from Nalm-1 cells were used. However, in all cases binding was much lower than when control immunoglobulin promoters containing perfect octamers were used (data not shown). To determine if this relatively low level of binding was due to the lack of tight binding sites for transcription factors, we changed the imperfect octamer to a perfect one (Fig. 6A) and repeated the analysis. Use of the \(\text{VH}_6-44\text{Mut} \) oligonucleotide resulted in the formation of significantly larger quantities of shifted complexes with each of the four nuclear extracts, indicating that the wild-type oligonucleotide with the imperfect octamer binds factors only weakly (Fig. 6B). The major complex formed with each of the four extracts was of similar size, indicating that the same factors were probably bound in each case. This complex contained Oct-1, as indicated by the ability of an anti-Oct1 antibody to shift all of this complex (Z. Sun, unpublished data).
The V\textsubscript{H6} promoter displayed no tissue specificity, either with the imperfect octamer and the heavy chain enhancer or with a perfect octamer. The perfect octamer and the heavy chain enhancer have been found to limit expression of Ig promoters to B cells (23, 24, 29), and their inability of to do so in the context of the V\textsubscript{H6} promoter was unexpected. To determine if some element of other Ig gene promoters absent in the V\textsubscript{H6} promoter was also required, we compared the promoter activity of the V\textsubscript{H6} gene to that of a V\textsubscript{H2} gene family member. The DNA sequence of the V\textsubscript{H2} promoter fragment is shown in Fig. 7. This promoter contains a perfect octamer centered around -80 bp from the translational start site, and a TATA box-like element is found between -44 and -50. In preliminary experiments, we determined that this 226 bp fragment was as efficient as a 1 kb fragment when placed in front of a CAT reporter gene (Z.Sun, unpublished results). When the promoter activities of the 226 bp V\textsubscript{H2} gene fragment and the 146 bp fragment from the V\textsubscript{H6} gene were compared using CAT reporter constructs, the results in Fig. 8 were obtained. The DNA fragment from the V\textsubscript{H2} promoter produced lower CAT activities in all four cell lines tested, ranging from 55% to 85% that of the V\textsubscript{H6} promoter in the three B cell lines, to less than 5% that of the V\textsubscript{H6} promoter in HeLa cells. This is the pattern of expression seen for many other Ig heavy chain gene promoters highly active in B cells and essentially inactive in non-lymphoid cells. To determine if there were specific DNA sequences in the V\textsubscript{H2} promoter that were required to inhibit expression of the promoter in HeLa cells, chimeric promoters were produced that were part V\textsubscript{H2} and part V\textsubscript{H6} (Fig. 9A). The V\textsubscript{H2}/V\textsubscript{H6}/Imm construct contained V\textsubscript{H6} promoter sequences from -8 to the octamer, with the remainder of the promoter sequences coming from V\textsubscript{H2} (up through -226). The V\textsubscript{H6}/V\textsubscript{H2}/Imm construct contained V\textsubscript{H2} sequences from the translation initiation site to the octamer, followed by V\textsubscript{H6} promoter sequences up to -146. All constructs contained the immunoglobulin heavy chain enhancer. The wild-type and chimeric constructs were transfected into ML-1

![Figure 4](VH6 Promoter Sequence)

Figure 4. V\textsubscript{H6} promoter point mutants. (A) DNA sequence of the V\textsubscript{H6} promoter from the transcriptional start site to -146. The oval, open box and dashed box denote the locations of the imperfect octamer, the TATA box and the pyrimidine rich region, respectively. The sequences of the point mutants are shown below that of the wild-type sequence. (B) CAT activities of the V\textsubscript{H6} imperfect octamer (VH6-146T/Imm-CAT) and double point mutant octamer (VH6-146T/Imm-CAT) containing expression plasmids. The relative CAT activity of the wild-type construct was set at 100% in each of the four cell lines. (C) CAT activity of the V\textsubscript{H6} promoter construct containing three nucleotide changes in the pyrimidine box region. The CAT activity of the mutant is expressed relative to that of the wild-type for each of the four cell lines tested.
and HeLa cells, and CAT activity measured. The results demonstrate that all constructs were active in the B cell line ML-1, but only two of the four constructs showed significant activity in HeLa cells (Fig. 9B). These were the wild-type VH6 promoter, and the chimera in which VH6 sequences replaced the sequences in the VH2 promoter upstream of the octamer. The chimera in which the VH2 sequences upstream of the octamer were attached to the VH6 promoter effectively silenced the VH6 promoter in HeLa cells, implying that a non-B cell extinguisher is located somewhere between -80 and -226 in the VH2 promoter.

DISCUSSION

The results presented in this paper demonstrate that the human immunoglobulin VH6 promoter requires 110 bp of upstream sequence for full activity under the transient expression conditions we used. The promoter is very active in B cells of various differentiation stages, and is also very active in the epithelial HeLa cell line. The VH6 promoter is not significantly stimulated by the Ig heavy chain gene enhancer element, nor does this element repress transcription in non-B cells. The activity of the VH6 promoter in non-B cells is probably due to the lack of an element such as is found in the VH2 promoter, that extinguishes expression in non-B cells. The lack of a positive or negative effect of the enhancer, combined with the lack of tissue specificity, make the VH6 promoter unique among the Ig promoters studied thus far.

Architecture of the VH6 promoter

The minimal promoter element for the VH6 gene contains five potential factor binding sites in addition to the TATA box. Our analysis, using the CAT expression vectors containing the Ig heavy chain enhancer, has demonstrated that no one element in the promoter appears to be the major factor responsible for
The nucleotide sequence of the V\textsubscript{H}2 promoter is shown. The downstream Ncol site includes the ATG initiation codon. The underlined sequence at positions -44 to -50 represents a TATA-box-like element, while the next underlined sequence is the octamer binding sites.

Figure 7. Nucleotide sequence of the V\textsubscript{H}2 promoter. The nucleotide sequence of an Ncol/Ncol fragment of the V\textsubscript{H}2 promoter is shown. The downstream Ncol site includes the ATG initiation codon. The underlined sequence at positions -44 to -50 represents a TATA-box-like element, while the next underlined sequence is the octamer binding sites.

Figure 8. CAT activity in cells transfected with V\textsubscript{H}6 and V\textsubscript{H}2 promoter constructs. CAT reporter gene constructs driven by a 226 bp fragment form the V\textsubscript{H}2 promoter or a 146 bp fragment from the V\textsubscript{J} promoter were electroporated into each of the four cell lines, extracts prepared, and CAT activity measured as described in Materials and Methods. Three different amounts of each plasmid were tested in each cell line. (A) Autoradiograph of a TLC showing the conversion of chloramphenicol to acetylated chloramphenicol. (B) Quantification of the autoradiogram showing the relative CAT activity of ML-1 or HeLa cells electroporated with the four constructs.

transcription. Starting with the V\textsubscript{H}6-110/Imm construct, which contains the potential USF-2 binding site, but at the present time we do not know whether or not it is this site within the 27 bp that is the important element for transcription in non-B cells. The results with the deletion mutants were strengthened by the results obtained with point mutants. Changes in the first and fifth position within the imperfect octamer reduced promoter activity by 40-70% in the three B cell lines, but only by about 14% in HeLa cells. While an intact imperfect octamer is clearly required for full activity in all cells, it appears that sequences between -110 and -84 are relatively more important in HeLa cells. This region contains the potential USF-2 binding site, but at the present time we do not know whether or not it is this site within the 27 bp that is the important element for transcription in non-B cells. Using crude nuclear extracts from B cells and non-B cells, we do not find protection of this region in methylation interference experiments (Z. Sun, unpublished data). Experiments with promoters containing mutations in the potential USF-2 binding
site and adjacent regions will be required to determine the element(s) in this region important for promoter activity in HeLa cells.

The Vµ6 promoter does not require the immunoglobulin enhancer in the construct that we have used, and the SV40 enhancer has no effect on the level of transcription. We have used both a minimal enhancer element, which has been shown by others to be functional, and a much larger region surrounding the enhancer, to determine if transcription of the Vµ6 promoter in HeLa cells could be due to the absence of the non-lymphoid cell silencers found in the mouse heavy chain enhancer. Our results demonstrate that if such sequences are present in the human heavy chain enhancer, they are not active under the conditions we used (61). Although we have only analyzed the requirement for the enhancer with this element located downstream of the CAT reporter gene, this enhancer has been shown to be relatively position- and orientation-independent and should function at this location. The lack of tissue specificity seems to be due to the lack of another element, found in the promoter of the Ig heavy chain gene from the Vµ2 family, but absent from the Vµ6 promoter. It should be noted that while the constructs we used, with the exception of the wild-type Vµ2 promoter, contained imperfect octamers, similar results were obtained with promoter constructs containing perfect octamers (Z. Sun, unpublished results). We are currently constructing chimeric promoters with smaller portions of the Vµ2 upstream site and adjacent regions to further localize the elements involved in tissue specificity.

Imperfect octamer-containing promoters

There are at least 16 human and mouse Ig heavy and light chain gene promoters that have been found to contain variant octamers, usually with one nucleotide change in the canonical sequence ATGCAAAT (for a complete list, see ref. 56). The Vµ6 promoter element studied here is the only human Ig heavy chain promoter discovered thus far that contains a variant octamer. Several variant octamer-containing Ig gene promoters from mice have recently been studied (56, 57), and results from those studies have indicated that other transcription factors that bind adjacent to the imperfect octamer are necessary for compensatory transcription by the variant octamer. In one case, binding of a lymphoid-specific factor called xY could activate a mouse kappa gene promoter (56), while a ubiquitous factor termed NTF activated the transcriptional capability of a variant octamer-containing mouse heavy chain promoter (57). Both of these factors recognize relatively pyrimidine-rich sequences located immediately upstream of the variant octamer. The Vµ6 promoter contains a region that resembles the NTF binding domain, with a 10/12 nucleotide match. These sequences are located between −37 and −48 (6) just downstream of the putative TATA box. The transient transfection assay has shown that this element is required for maximal Vµ6 promoter activity, although the double point mutant that we studied retained more activity than similar mutants in the xY or NTF binding sites. Removal of the xY site from the mouse kappa promoter reduced transcriptional activity by 84% (56), and mutation of the NTF site reduced in vitro transcription by 3-fold (57). These results are in contrast to the minimal reductions (10−30%) seen with the Vµ6 promoter when the 10/12 pyrimidine box was changed to one having only a 7/12 match. We are cautious in interpreting these results, as there are a number of differences in the constructs and the methods used to analyze expression that make comparisons difficult. For example, in the studies with the mouse kappa chain promoter, the plasmid constructs contained an authentic gene including enhancer, but promoter activity was not measured in non-B cells (56). The studies with the mouse heavy chain promoter used a construct without an enhancer, but utilized both B cell and non-B cell extracts for in vitro transcription studies. This promoter was active in HeLa cell extracts when the NTF binding site was present, regardless of whether the variant octamer was intact, but the promoter was dependent on both the octamer and NTF binding sites for full activity in B cells (57). Further work is clearly needed to determine the exact role that the variant octamer, alternative factor binding sites, and enhancers play in controlling the level and tissue specificity of transcription of Ig promoters. We have used gel shift assays to attempt to determine whether a factor similar to xY or NTF binds to the pyrimidine-rich region in the Vµ6 promoter, but no complexes have been observed (Z. Sun, unpublished observations).

Analysis within the natural context

Promoters generally rely on more than one transcription factor, or factor binding site, to interact with the generalized transcriptional machinery to effect mRNA synthesis. In many Ig promoters, the binding of two octamer binding proteins to the octamer and heptamer elements promotes a sufficiently strong interaction to allow efficient transcription (23). In other Ig promoters that do not contain heptamers, pyrimidine-rich elements such as xY and NTF synergize with the octamer element to promote strong binding of the transcription factors to allow for high levels of transcription (56, 57). A third combination of factor binding sites known to promote efficient transcription of Ig promoters is one where the octamer and a USF site are paired. Such a combination has been shown to stimulate the basal level of transcription of the mouse λ2 gene (62). The Vµ6 promoter does not contain a heptamer and mutation of a pyrimidine-rich sequence in the promoter region does not have a significant effect on the transcriptional activity of the promoter in plasmid constructs. The Vµ6 promoter does contain a USF-2-like sequence immediately upstream of the imperfect octamer, and deletion of this region reduces transcriptional activity in B cells (by about 30%) and non-B cells (by about 70%). The USF-2-like site is the only transcription factor recognition motif found by computer search of the 27 bp region deleted in the Vµ6-84kbp construct, but we have not directly tested the role of this potential binding site in Vµ6 promoter activity. As indicated above, this site is not protected in DNA methylation protection experiments, so all we can conclude at the present time is that some site within the 27 bp region is important for Vµ6 promoter activity, and that this site is more crucial for activity in non-B cells than in B cells.

Several groups have reported that mutation of any single nucleotide in the octamer sequence would cause either, (1) loss of binding activity in gel mobility shift assays with both the B cell-specific transcription factor Oct-2 and the ubiquitous transcription factor Oct-1, or (2) abolition of promoter activity in in vitro transcription assays (29, 47). However, subsequent work by Herr and co-workers demonstrated that the binding of both Oct-1 and Oct-2 to octamer-containing promoters is very dependent on the context within which the octamer lies, and variant octamers with only a 3 of 8 match can bind both Oct-1 and Oct-2 tightly in the proper context (63). The results from the electrophoretic mobility shift assays performed with the wild-
type and mutant VH6 promoters (Fig. 7B) demonstrate that the affinity of factors, including the octamer binding factors, is not high for the imperfect octamer, but that this does not affect the ability of this promoter to function. The lack of tight binding of factors to the oligonucleotide containing the imperfect octamer contrasts with the strong promoter activity for VH6 in vivo, which is in contrast to several other promoters that have been studied previously (29). Further, increasing the factor binding strength by changing the imperfect octamer to a perfect one in VH6 only slightly increases the in vivo promoter activity (Z.Sun, unpublished data). Elements outside of the 44-mer used for the mobility shift assays may compensate for the poor binding of the octamer binding factors in the context of the natural promoter, although gel mobility shift assays with DNA fragments scanning the promoter region have yet to identify such an element (Z.Sun and G.R.Kitchingman, unpublished data).

The upstream region also acts as a promoter in an orientation-independent manner, perhaps due to the presence of a TATA box-like element on the opposite strand. When the -74 to -146 fragment is reversed as in the VH6-74/Imm(R) construct, the TATA box is now positioned about 40 nucleotides away from the normal transcription initiation site for the VH6 gene, and could potentially function to promote transcription. The presence of this TATA box in the inverse orientation opens up the possibility that bidirectional transcription is occurring in this region. Bidirectional transcription has been demonstrated as occurring from the mouse VH441 promoter (64). In that case, the RNA produced from the upstream transcription unit is not polyadenylated, and apparently is non-coding. Examination of the upstream region of the VH6 promoter demonstrates that one reading frame is open for over 300 bp, indicating the potential for a protein coding transcript from this region. Studies to identify potential transcripts and determine their coding potential are reported in the accompanying paper (Z.Sun and G.R.Kitchingman).

Tissue specificity of the VH6 promoter

The immunoglobulin promoters studied to date require relatively little upstream sequence to promote basal level transcription, and studies from many laboratories have identified the octamer as the element most critical for conferring cell type-specific transcriptional regulation (4, 23–27, 30, 37). Transcription of the VH6 gene is non-tissue-specific. Others have found that Ig promoters with high affinity octamer binding sites directed ubiquitous expression, while those constructs with weak octamer binding sites were more B cell specific (61). This is exactly the opposite of what we have found. Conversion of the VH6 imperfect octamer to a perfect one by site-directed mutagenesis results in a more B cell specific promoter (Z.Sun and G.R.Kitchingman, unpublished results), and in a higher affinity binding site as judged by gel mobility shift assays (Fig. 6B). While these differences may reflect the natural differences between the human Ig heavy chain gene promoter we studied and the mouse Ig gene promoters studied by Schaffner’s group, they also emphasize the need to analyze promoters within their natural contexts to determine if such differences really do exist.

The mouse studies were performed using partial Ig gene promoters truncated immediately upstream of the perfect octamer elements, and were in a plasmid with an SV40 enhancer (61). The relative ratio of the Oct-1 and Oct-2 proteins in the cells used for transcription may have an effect on the relative strength and tissue specificity of the Ig promoter (65). The cell lines that we chose to use have variable ratios of Oct-1 and Oct-2, ranging from high Oct-2 levels in BIA-B cells to no Oct-2 in HeLa cells, and this does not seem to affect the absolute level of transcription from the VH6 promoter. It thus appears that the basal level of transcription from this promoter can be stimulated by either of the octamer binding factors. The tissue specificity seems to be due to the lack of a negative element in the promoter region that prevents expression in non-B cells (Fig. 9B). This factor(s) may bind to element(s) analogous to those found in the heavy chain gene enhancer in mice, which act as repressors of transcription in non-B cells (20, 21). From a series of VH2 promoter deletions that we have made, the region containing this element has been narrowed to between -126 and -176, with there being some sequences between -176 and -226 that have a small effect on tissue specificity (Z.Sun, unpublished data). Whatever the identity of this element, our data demonstrate that the lack of tissue specificity of the VH6 promoter is due to the absence of a repressor of transcription in non-B cells. We emphasize that the tissue specificity of promoter activity pertains only to the plasmid constructs, and not to the endogenous genes. In non-B cells the immunoglobulin genes are present in closed chromatin that lack the DNase I hypersensitive sites of transcribed regions (67), and for the heavy chain gene enhancer, do not have proteins bound to sites critical for activity (68). We expect that the VH6 gene region will also be present in closed chromatin in HeLa cells and will not be transcribed, and in support of this we have found no evidence for transcription in the region surrounding this promoter (Z.Sun and G.R.Kitchingman, unpublished data). Thus, while there is the potential for VH6 promoter activity in non-B cells, there is no evidence that this actually occurs.

We were interested in the VH6 promoter for several reasons. The first is that it is the VH region most proximal to the diversity elements (4, 8) and is probably the first variable region promoter activated in ontogeny. Consequently, the requirements for its optimal activity may differ from those of other variable region promoters. The second is that the human immunoglobulin heavy chain enhancer, which is the earliest Ig promoter used during B cell ontogeny and the first used during the rearrangement process, also contains two imperfect octamer sequences (20, 21). The presence of imperfect octamers is potentially functionally important because of several reports demonstrating the decreased octamer binding factor capability of such elements (47), and the in vivo decrease in promoter activity (29). Other elements must compensate for the imperfect octamer in this promoter and studies to identify such elements are currently in progress.

Our current studies have served to identify the minimal promoter region of the Ig VH6 gene, and have determined that the promoter, even in the context of the Ig heavy chain gene enhancer, is not tissue specific. Studies to identify transcription factor binding sites in the VH6 promoter that are necessary for optimal activity are in progress.

ACKNOWLEDGEMENTS

We thank Pat Stow for help with the tissue culture, and Christy Wright for editorial review. This work was supported by National Institutes of Health grants CA-52259 and CA-20180, CORE grant CA-21765, and by the American Lebanese and Syrian Associated Charities.
REFERENCES