Detection of reliable and unexpected protein fold predictions using 3D-Jury

Krzysztof Ginals and Leszek Rychlewski*

Bioinformatics Laboratory, BioInfoBank Institute, ul. Limanowskiego 24A, 60-744 Poznan, Poland

Received January 21, 2003; Revised and Accepted February 7, 2003

ABSTRACT

3D-Jury is a fully automated protein structure meta prediction system accessible via the Meta Server interface (http://BioInfo.PL/Meta). This is one of the meta predictors, which have made a dramatic, unprecedented impact on the last CASP-5 experiment. The 3D-Jury is comparable with other meta servers but it has the highest combined specificity and sensitivity. The presented method is also very simple and versatile and can be used to create meta predictions even from sets of models produced by humans. An additional and very important and novel feature of the system is the high correlation between the reported confidence score and the accuracy of the model. The number of correctly predicted residues can be estimated directly from the prediction score. The high reliability of the method enables any biologist to submit a target of interest to the Meta Server and screen with relatively high confidence, whether the target can be predicted by fold recognition methods while being unpredictable using standard approaches like PSI-Blast. This can point to interesting relationships which could have been missed in annotations of proteins or genomes and provide very valuable information for novel scientific discoveries.

INTRODUCTION

Protein structure prediction is a mature scientific field with clear application in molecular biology. The structure prediction community evaluates the progress in this field by conducting rigorous, objective, biannual assessment CASP (Critical Assessment of Techniques for Protein Structure Prediction) (1) and CAFASP (Critical Assessment of Fully Automated Structure Prediction) (2) experiments. An important, and probably the main, result of the last round of these experiments (CASP-5 and CAFASP-3) conducted in 2002 is that fully automated structure prediction servers are becoming robust enough to compete with the best human groups. The latest progress is mainly attributed to the development of meta predictors (meta servers), which extract common structural motifs from the set of 3D models generated by various independent prediction providers. The resulting final models have a higher chance of being correct than the models produced by any single method. An important additional advantage of the meta predictors is the improved estimation of the reliability of the predictions. The analysis of the confidence of blind predictions was not conducted successfully so far for human groups, while it is always an important parameter in the assessment of servers.

As a result of the progress, users of meta predictors can obtain high quality models but with a negligible fraction of the effort invested usually in predictions by human groups participating in CASP. The results also contain a reliable confidence score, which for one of the best performing meta servers, 3D-Jury, turned out to correlate astonishingly well with the accuracy of the model. Figure 1 shows the correlation obtained for the 3D-Jury meta predictor on CASP-5 targets.

DESCRIPTION AND APPLICATION

The 3D-Jury system is a simple and versatile program. The technical details of the algorithm have been published elsewhere (3). The 3D-Jury is comparable with other meta predictors like 3D-ShotGun (4) and the Pcons (5) series, but it has the highest combined specificity and sensitivity (Pcons/ Pmodeller seems more specific, while a 3D-ShotGun version is sometimes more sensitive) as assessed in the current LiveBench (6,7) experiment (http://BioInfo.PL/LiveBench). The main advantage over other meta predictors is that the user can decide which of the many prediction providers shall be used for consensus building. The program can utilize predictions provided by human groups as well. Accordingly, this feature was used when analyzing models collected from human experts for the Ten Most Wanted experiment (8).

An important feature of 3D-Jury is its ability to highlight predictions, which are reliable but could not be obtained with confidence using simple application of standard homology detection tools such as PSI-Blast (9) (Fig. 1). This can be used to screen predictions for potentially yet undetected cases of structural or functional similarity. Currently, approximately one out of the 20 targets submitted daily to the Meta Server (10) could be classified this way. Unfortunately, due to limited computational resources, high throughput annotations cannot

*To whom correspondence should be addressed. Tel: +48 618653520; Fax: +48 618132606; Email: leszek@bioinfo.pl
be conducted yet. The performance of meta predictors could promote the utilization of partially underestimated fold recognition methods, which could lead to an increased access to computation resources by algorithm developers.

It has to be stressed that the development of the meta predictors was only possible as a joint effort of the whole protein structure prediction community. The community designs and constantly improves algorithms, which are shared or offered as servers, conducts objective evaluation experiments and produces user-friendly access to its achievements for the much larger community of biologists.

ACCESS

The 3D-Jury system is accessible via the Structure Prediction Meta Server interface (http://BioInfo.PL/Meta). Due to insufficient computational resources available to some structure prediction servers, the access to the 3D-Jury system is limited to 10 predictions per week from any domain. Special restrictions apply for Polish institutions. This policy is subject to change and can be modified after consultation with the administrators.

REFERENCES