Region and amino acid residues required for Rad51C binding in the human Xrcc3 protein

Hitoshi Kurumizaka1,2,3,4, Rima Enomoto1, Maki Nakada1, Keiko Eda1, Shigeyuki Yokoyama1,2,5 and Takehiko Shibata3,6,*

1RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan, 2Cellular Signaling Laboratory, RIKEN Harima Institute at SPring-8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan, 3Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, 1637 Yana, Kisanazu, Chiba 292-0812, Japan, 4Department of Electrical Engineering and Bioscience, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan, 5Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and 6Cellular and Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

Received March 25, 2003; Revised and Accepted April 28, 2003

ABSTRACT

The Xrcc3 protein, which is required for the homologous recombinational repair of damaged DNA, forms a complex with the Rad51C protein in human cells. Mutations in either the \textit{Xrcc3} or \textit{Rad51C} gene cause extreme sensitivity to DNA-damaging agents and generate the genomic instability frequently found in tumors. In the present study, we found that the \textit{Xrcc3} segment containing amino acid residues 63±346, \textit{Xrcc3}_{63±346}, is the \textit{Rad51C}-binding region. biochemical analyses revealed that \textit{Xrcc3}_{63±346} forms a complex with \textit{Rad51C}, and the \textit{Xrcc3}_{63±346}±\textit{Rad51C} complex possesses ssDNA and dsDNA binding abilities comparable to those of the full-length \textit{Xrcc3}–\textit{Rad51C} complex. Based on the structure of \textit{RecA}, which is thought to be the ancestor of \textit{Xrcc3}, six \textit{Xrcc3} point mutants were designed. Two-hybrid and biochemical analyses of the \textit{Xrcc3} point mutants revealed that Tyr139 and Phe249 are essential amino acid residues for \textit{Rad51C} binding. Superposition of the \textit{Xrcc3} Tyr139 and Phe249 residues on the \textit{RecA} structure suggested that Tyr139 may function to ensure proper folding and Phe249 may be important to constitute the \textit{Rad51C}-binding interface in \textit{Xrcc3}.

INTRODUCTION

Homologous recombinational repair (HRR) is one of the major pathways to repair double-strand breaks (DSBs), which are frequently caused by exposure to various DNA-damaging agents, including ionizing radiation, crosslinking reagents and oxidative stress (1–3). DSBs are also induced during chromosomal DNA replication (4). When cells are defective in HRR, unrepaird DSBs accumulate in chromosomes, resulting in genomic instability (5–7). In fact, single nucleotide polymorphisms (SNPs) and mutations in genes involved in HRR have been identified in tumor cells (8,9).

In the key step of the HRR pathway, the homologous-pairing step, a single-stranded DNA (ssDNA) tail derived from a DSB site invades the homologous double-stranded DNA (dsDNA) to form a heteroduplex. In \textit{Escherichia coli}, the \textit{RecA} protein catalyzes the homologous-pairing step (10,11). Two eukaryotic homologs of \textit{RecA}, the \textit{Rad51} and \textit{Dmc1} proteins, which are conserved from yeast to human, have been identified (12–15). The \textit{Dmc1} protein functions only in meiotic cells, but the \textit{Rad51} protein is expressed in both meiotic and mitotic cells (12–15). In addition, five \textit{Rad51} paralogs [\textit{Xrcc2} (21,22), \textit{Xrcc3} (22,23), \textit{Rad51B/hREC2/Rad51L1} (24–26), \textit{Rad51C/Rad51L2} (27) and \textit{Rad51D/Rad51L3} (26,28,29)], which share 20–30% amino acid identity with \textit{Rad51}, have been identified in mammals.

The \textit{Xrcc2} and \textit{Xrcc3} genes were first identified as human genes that complement the DNA damage-sensitive hamster cell lines, irs1 and irs1SF, respectively (23,30–33), and were confirmed to be involved in HRR \textit{in vivo} (34,35). Cells lacking \textit{Xrcc2} or \textit{Xrcc3} show extreme sensitivity to DNA crosslinking reagents, such as cisplatin, and ionizing radiation, and have significantly increased chromosomal missegregation (22,23, 36). Knockout experiments in the chicken DT40 cell lines showed that the \textit{Rad51B}, \textit{Rad51C} and \textit{Rad51D} genes are also involved in the HRR pathway as well as the \textit{Xrcc2} and \textit{Xrcc3} genes (37,38).

The five \textit{Rad51} paralogs reportedly exist in two distinct complexes in human cells (39–42). One is composed of \textit{Rad51B}, \textit{Rad51C}, \textit{Rad51D} and \textit{Xrcc2}. This type of complex formation was predicted by the yeast two- and three-hybrid experiments (43). The \textit{Xrcc2}–\textit{Rad51D} and \textit{Rad51B}–\textit{Rad51C} subcomplexes were also purified as recombinant proteins...
(44,45). The Xrcc2–Rad51D complex has potential to catalyze homologous pairing between ssDNA fragment and superhelical dsDNA (44). Although Rad51B does not catalyze homologous pairing by itself (46,47), the Rad51B–Rad51C complex functions in the homologous-pairing step to antagonize the RPA-dependent repression in strand exchange by Rad51 (45). These results with the subunits of the Rad51B–Rad51C–Xrcc2 complex suggested that the complex functions in the homologous-pairing step of HRR.

Another Rad51-paralog complex found in human cells is composed of Xrcc3 and Rad51C (39–42). Interestingly, the two-hybrid screening with the human brain cDNA library showed that Xrcc2 and Xrcc3 independently interact with Rad51D and Rad51C, respectively, also suggesting that Xrcc2 and Xrcc3 exist in different complexes in brain cells (44,48). The purified Xrcc3–Rad51C complex binds to ssDNA and dsDNA (48,49), and has the potential to catalyze homologous pairing (48). Rad51C alone also promotes strand exchange between homologous single-stranded and double-stranded oligonucleotides, probably through its dsDNA destabilizing activity (47), suggesting that Rad51C is a catalytic center for this type of homologous pairing. On the other hand, no biochemical analysis of Xrcc3 itself has been reported yet. The Xrcc3 variant allele, Thr241Met, is found with significantly higher frequency in melanoma skin cancer and bladder cancer (50–52). However, no significant effect on the HRR pathway with the Xrcc3 variant was detected in the cells (53). Analyses of the domains and the amino acid residues required for the Rad51-paralog functions are important to understand the biological consequences of their SNPs and mutations.

In the present study, we performed a two-hybrid analysis with deletion mutants of Xrcc3 and Rad51C to identify the regions required for the Xrcc3–Rad51C interaction, and found that the N-terminal region (1–62 amino acids) of Xrcc3 is dispensable for Rad51C binding. On the other hand, the entire region of Rad51C, except for several residues in the N-terminus, is required for Xrcc3 binding. Biochemical analyses revealed that an Xrcc3 deletion mutant containing amino acid residues 63–346 (Xrcc363–346) forms a complex with Rad51C, and the Xrcc363–346–Rad51C complex can bind ssDNA and dsDNA as well as the full-length Xrcc3–Rad51C complex, although the DNA-binding ability of Rad51C alone is apparently lower than those of the complexes. A mutational analysis also showed that the Xrcc3 Phe249 residue, which is located on the solvent accessible surface when the Xrcc3 amino acids are superimposed on the RecA structure, is essential for Rad51C binding.

MATERIALS AND METHODS

Yeast two-hybrid analysis

The human Xrcc3 and Rad51C genes were cloned from human brain cDNA (purchased from Clontech) by the polymerase chain reaction (PCR). The DNA fragments encoding the Xrcc3 and Rad51C deletion mutants were designed based on secondary structure predictions, and were amplified by the PCR method. Mutations at Phe30, Tyr139, Phe180, Phe219, Phe223 and Phe249 of Xrcc3 were introduced by the site-directed mutagenesis method. The DNA fragments containing sequences derived from Xrcc3 were ligated into the NdeI site of the pAS2-1 vector (Clontech), and those containing sequences derived from Rad51C were ligated into either the Smal or NcoI site of the pACT2 vector (Clontech). Plasmids pAS2-1 and pACT2 contain the GAL4 DNA-binding domain and the GAL4 activation domain, respectively, just upstream of their multiple cloning sites. The pAS2-1 vector containing the Xrcc3 sequence was introduced into the yeast strain AH109 and the pACT2 vector containing the Rad51C sequence was introduced into the yeast strain Y187. Two-hybrid interactions between Xrcc3 and Rad51C were tested by mating the AH109 and Y187 strains, according to the manufacturer’s protocol (Clontech Matchmaker GAL4 protocol). The interaction between Xrcc3 and Rad51C induced the expressions of the HIS3 and LacZ reporter genes, which were detected by yeast growth on a synthetic dextrose minimal medium (SD) plate without histidine and by β-galactosidase activity using a 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) filter assay, respectively.

Purification of the Xrcc363–346–Rad51C complex

The Xrcc3–Rad51C complex and Rad51C were purified as described previously (48). The DNA fragments containing Xrcc363–346 and Rad51C were inserted into the pET15b vector at the NcoI and NdeI sites, respectively. Then, the pET15b vector containing the Rad51C sequence was digested with BglII and BamHI, and the fragment with Rad51C was ligated into the BamHI site of the pET15b-Xrcc363–346 vector. The over-expression plasmid for Xrcc363–346 and Rad51C was introduced into E.coli JM109 (DE3) cells with the plasmid containing the genes for E.coli tRNAArg³ and tRNAArg⁴, which recognize the CGG and AGA/AGG codons, respectively. The cells were grown in 101 of LB medium containing 100 μg/ml ampicillin and 34 μg/ml chloramphenicol at 30°C for 10 h, and then 200 μM isopropyl β-thiogalactopyranoside (IPTG) was added to induce protein expression. Xrcc363–346 and Rad51C were produced for 12 h at 18°C in the presence of IPTG, and the cells were harvested. The Rad51C protein contains a His₆-tag and the Xrcc363–346 protein contains a FLAG-tag at the N-terminus. The cells producing Xrcc363–346 and Rad51C were resuspended in 20 ml of 20 mM sodium phosphate buffer (pH 8.5) containing 0.5 M NaCl, and were disrupted by sonication. The samples were centrifuged for 20 min at 30 000 g and the supernatants were incubated with 4 ml of Ni-NTA agarose (Qiagen) for 1 h at 4°C.

The Xrcc363–346 and Rad51C-bound resin was packed into a column and was washed with 300 ml of 20 mM Tris–HCl buffer (pH 8.5) containing 10 mM imidazole and 0.5 M NaCl. Subsequently, the resin was washed with 150 ml of 20 mM Tris–HCl buffer (pH 8.5) containing 10 mM imidazole. Xrcc363–346 and Rad51C were eluted by a gradient of imidazole from 10 to 400 mM in 20 mM Tris–HCl buffer (pH 8.5). The samples eluted from the Ni-column were applied to a heparin–Sepharose column (Amersham Biosciences) previously equilibrated with 20 mM Tris–HCl buffer (pH 8.5) containing 2 mM dithiothreitol and 10% glycerol. The proteins were eluted by a gradient of NaCl from 0 to 1200 mM and were dialyzed against 20 mM Tris–HCl buffer (pH 8.1) containing 5 mM dithiothreitol and 10% glycerol. The protein concentration was determined by the Bio-Rad protein assay kit (Bio-Rad), using bovine serum albumin (BSA) as the standard protein.
Preparation of closed circular double-stranded DNA
To avoid irreversible denaturation of the dsDNA, we prepared the plasmid DNA without any treatment that would potentially cause denaturation, such as alkaline treatment. The plasmid DNA (pGsat4; 3216 bp) containing the human α-satellite sequence was introduced into the E.coli DH5α strain and the cells were cultured for 12–16 h at 37°C. The cells were harvested, mildly disrupted with 0.5 mg/ml lysozyme and 0.1% sarkosyl, and centrifuged at 92 000 g for 1 h. The supernatant containing the pGsat4 plasmid DNA was extracted with phenol/chloroform three times, and the pGsat4 DNA in the aqueous phase was precipitated by ethanol. The pellet was dissolved in 1 ml of TE buffer and was treated with 0.15 mg/ml RNaseA at 37°C for 1 h. The pGsat4 DNA was purified by a 5–20% sucrose gradient centrifugation at 98 000 g for 18 h. DNA concentrations are expressed in moles of nucleotides.

Preparation of circular single-stranded DNA
The E.coli cells (JM109) containing pGsat4 DNA were cultured in LB medium until an A660 of 0.3 was achieved, and were then infected with the helper phage R408 at a multiplicity of infection (m.o.i.) of ~20. After infection, the cells were continuously cultured for 6 h with vigorous agitation. Then, the supernatant was harvested and was treated with DNase I (10 U/ml) and RNase A (10 μg/ml) for 15 min at 37°C. The phage containing pGsat4 ssDNA was precipitated by adding 0.25 vol of phage precipitation solution, containing 3.75 M ammonium acetate (pH 7.5) and 20% polyethylene glycol 8000. The resulting pellet was resuspended in TE buffer, and the pGsat4 ssDNA was extracted with chloroform: isoamyl alcohol (24:1) followed by phenol:chloroform saturated with TE buffer. After several phenol:chloroform extractions, the aqueous phase was extracted with chloroform and the pGsat4 ssDNA was precipitated with 2 vol of ethanol in the presence of 3.25 M ammonium acetate. The resulting pellet was rinsed with 70% ethanol and was dried under vacuum. The pGsat4 ssDNA was dissolved in H2O, and its concentration is expressed in moles of nucleotides.

Single-stranded DNA binding assay
Single-stranded pGsat4 DNA (40 μM) was mixed with Xrcc3–Rad51C, Xrcc363–346–Rad51C or Rad51C in 10 μl of standard reaction buffer, containing 20 mM Tris–HCl (pH 8.1), 2 mM ATP, 1 mM dithiothreitol, 100 μg/ml BSA, 2 mM MgCl2 and 3% glycerol. Protein concentrations were 0.35, 0.7 and 1.1 μM. The reaction mixtures were incubated at 37°C for 10 min, and the samples were electrophoresed on a 0.8% agarose gel for 4 h at 3 V/cm in 0.5× TBE buffer (45 mM Tris-borate and 1 mM EDTA). The bands were visualized by ethidium bromide staining.

Double-stranded DNA binding assay
Superhelical pGsat4 DNA (15 μM; 3216 bp) was mixed with Xrcc3–Rad51C, Xrcc363–346–Rad51C or Rad51C in 10 μl of standard reaction buffer, containing 20 mM Tris–HCl (pH 8.1), 2 mM ATP, 1 mM dithiothreitol, 100 μg/ml BSA, 2 mM MgCl2 and 3% glycerol. Protein concentrations were 0.35, 0.7 and 1.1 μM. The reaction mixtures were incubated at 37°C for 10 min, and the samples were electrophoresed on a 0.8% agarose gel for 4 h at 3 V/cm in 0.5× TBE buffer (45 mM Tris-borate and 1 mM EDTA). The bands were visualized by ethidium bromide staining.

RESULTS
Deletion analysis of the Xrcc3 and Rad51C regions required for their interaction
In order to study the Rad51C-interacting region of Xrcc3, we constructed 12 Xrcc3 deletion mutants, Xrcc310–346, Xrcc320–346, Xrcc331–346, Xrcc341–346, Xrcc331–346, Xrcc363–346, Xrcc31–223, Xrcc31–250, Xrcc31–270, Xrcc31–308, Xrcc31–320 and Xrcc31–337, which were composed of amino acid residues 10–346, 20–346, 31–346, 41–346, 63–346, 85–346, 1–223, 1–250, 1–270, 1–308, 1–320 and 1–337, respectively (Fig. 1A). These Xrcc3-deletion mutants were tested for their abilities to interact with Rad51C by the yeast two-hybrid analysis. In this system, the Xrcc3–Rad51C interaction induces the expressions of the HIS3 and LacZ reporter genes, which allow the yeast strain to grow in the absence of histidine (Fig. 1B, lane 2, middle row) and with blue color in the presence of X-Gal (Fig. 1B, lane 2, bottom row). As shown in Figure 1B, five N-terminally truncated...
Xrcc3 mutants, Xrcc3_{10-346}, Xrcc3_{20-346}, Xrcc3_{31-346}, Xrcc3_{41-346} and Xrcc3_{63-346}, were able to interact with Rad51C as well as the full-length Xrcc3 (lanes 2–7); however, Xrcc3_{85-346}, which lacked the N-terminal 84 amino acid residues, did not interact with Rad51C (lane 8). These results indicate that the N-terminal 62 amino acid residues of Xrcc3 are not involved in Rad51C binding. In contrast, none of the C-terminally truncated Xrcc3 mutants interacted with Rad51C, and even Xrcc3_{1-223}, which lacked only nine amino acids from the C-terminal end, did not interact with Rad51C (Fig. 1B, lanes 9–14). Therefore, the C-terminal segment of residues 63–346 is the Rad51C-binding region of Xrcc3.

Next, we analyzed the Xrcc3-interacting region of Rad51C. Based on the secondary structure prediction, six N-terminally and six C-terminally truncated Rad51C mutants were constructed (Fig. 1C), and were tested for their abilities to interact with Xrcc3 by the two-hybrid analysis. As shown in Figure 1D, only one Rad51C deletion mutant, which lacked seven amino acid residues from the N-terminal end, interacted with Xrcc3. Therefore, the entire region of Rad51C, except for several N-terminal residues, is required for the Xrcc3 binding. These Rad51C deletion mutants may be defective in the proper folding of the protein. It has been reported that the DNA damage-sensitive hamster cell lines, CL-V4B and irs3, have mutations in the \textit{Rad51C} gene, and are probably missing exon 5 and exon 6, respectively (54,55). Exon 5 and exon 6 of the \textit{Rad51C} gene encode the amino acid residues from Val236 and Val280, respectively. As shown in Figure 1D, Rad51C_{1-234} and Rad51C_{1-291}, which lack the C-terminal regions from Lys235 and Arg292, respectively, were defective in the Xrcc3 interaction (lanes 10 and 11). The DNA damage-sensitive phenotypes of CL-V4B and irs3 may be due to a defective interaction between the Xrcc3 and Rad51C mutants.

The Xrcc3 deletion mutant, Xrcc3_{63-346}, forms a complex with Rad51C

To determine whether Xrcc3_{63-346} directly interacts with Rad51C, we co-expressed Xrcc3_{63-346} with the His_{6}-tagged Rad51C proteins in \textit{E.coli} cells, and studied their interaction using Ni-nitrilotriacetate (Ni-NTA) agarose
column chromatography. As shown in Figure 2A, Xrcc363–346, which did not contain a His6 tag, co-eluted with the His6-tagged Rad51C protein from the Ni-NTA agarose column. Both the Xrcc363–346 and Rad51C proteins were further co-purified by heparin–Sepharose column chromatography (Fig. 2B, lane 3). Therefore, these results indicate that Xrcc363–346 directly binds to Rad51C. Xrcc363–346 was not detected in the soluble fraction when it was expressed alone, suggesting that the complex formation with Rad51C is required for the proper folding of Xrcc363–346.

The DNA-binding activity of Xrcc363–346–Rad51C

Next, we tested the DNA-binding ability of the purified Xrcc363–346–Rad51C complex. It was reported that the Xrcc3–Rad51C complex binds ssDNA and dsDNA (48,49), and that the DNA-binding ability of Rad51C alone is lower than that of Xrcc3–Rad51C (48). In the present study, pGsat4 circular ssDNA (3216 bases) and pGsat4 superhelical dsDNA (3216 bp) were used as substrates for DNA binding by Xrcc363–346–Rad51C. Consistent with previous observations (47,48), both Xrcc3–Rad51C and Rad51C alone bound to ssDNA and dsDNA, but the ssDNA- and dsDNA-binding abilities of Rad51C alone were significantly lower than that of Xrcc3–Rad51C (Fig. 3). Interestingly, Xrcc363–346–Rad51C bound to ssDNA and dsDNA as well as Xrcc3–Rad51C (Fig. 3). Therefore, Xrcc363–346 contains the functional domain, which is important in the DNA binding of Xrcc3–Rad51C. It should be noted that the ssDNA binding of Rad51C alone was clearly detected with short single-stranded oligonucleotides (47). However, Rad51C binding to the long circular ssDNA (3216 bases) was poorly observed (48) (Fig. 3). Xrcc3 may be required in cooperative binding of Rad51C to the long DNA.

Design of mutations in Xrcc3

To identify the amino acid residues involved in the Xrcc3–Rad51C interaction, we constructed six mutant Xrcc3 genes, F30A, Y139A, F180A, F219A, F223A and F249A, each with an alanine replacement at positions Phe30, Tyr139, Phe180, Phe219, Phe223 and Phe249, respectively. Phenylalanine and tyrosine were selected as amino acids for mutagenesis, because these aromatic residues were frequently found at the protein–protein interface. As shown in Figure 4A, Tyr139 of Xrcc3 is perfectly conserved as an aromatic residue among the RecA/Rad51-class proteins (the human Rad51B, Rad51C, Rad51D, Rad51 and Dmc1 proteins, and the E.coli RecA protein). Phe180 of Xrcc3 is also highly conserved, and Phe219, Phe223 and Phe249 of Xrcc3 are partially conserved among the RecA/Rad51-class proteins (Fig. 4A). When these Xrcc3 amino acid residues were superimposed on the crystal structure of RecA (56), Tyr139, corresponding to Phe92 in RecA, was located inside the RecA molecule (Fig. 4B, red sphere), where it probably forms the hydrophobic core of the protein. Phe180, Phe219, Phe223 and Phe249 of Xrcc3 were located on the molecular surface of the RecA structure (Fig. 4B, yellow, green, blue, and pink spheres, respectively). Therefore, these residues are considered as candidates that are directly involved in the interface between Xrcc3 and Rad51C. The Xrcc3 F30A mutant was designed as a negative control, which has an amino acid replacement outside the Rad51C-interacting region of Xrcc3 (amino acid residues 63–346). These six Xrcc3 mutants were tested for their interactions with Rad51C.
Protein concentrations were 0.35 (lanes 2, 5 and 8), 0.7 (lanes 3, 6 and 9) suggesting that these mutants are defective in Rad51C binding. Y139A and F249A mutants did not show positive signals, surface in the model structure (Fig. 4B). In contrast, the Xrcc3 although these residues are located on the solvent accessible Xrcc3 are not involved in the Xrcc3−Rad51C interaction, mutants were also positive in Rad51C binding (Fig. 5, lanes 2 and 3). The Xrcc3 F180A, F219A and F223A mutants coprecipitated with the His6-tagged Rad51C protein as well as the wild-type Xrcc3 protein, indicating that these mutants were proficient in Rad51C binding (Fig. 6B, lanes 1, 2 and 4–6). On the other hand, the Xrcc3 Y139A and F249A mutants, which did not show an interaction with Rad51C in the two-hybrid analysis, exhibited a significant deficiency in Rad51C binding in the Ni-bead pull-down assay (Fig. 6B, lanes 3 and 7).

Consistent results were obtained with the immuno-precipitation assay using a polyclonal antibody against Rad51C. As shown in Figure 6C, Rad51C was specifically precipitated with the anti-Rad51C antibody from the extracts expressing both Xrcc3 (or a Xrcc3 mutant) and Rad51C. When protein fractions precipitated with the anti-Rad51C antibody were probed with a polyclonal antibody against Xrcc3, the Xrcc3 F30A, F180A, F219A and F223A mutants were detected as well as the wild-type Xrcc3 protein. In contrast, the amounts of the Xrcc3 Y139A and F249A mutants that were coprecipitated with Rad51C by the anti-Rad51C antibody were significantly decreased (Fig. 6D, lanes 3 and 7). All of these results from the three independent experiments, the two-hybrid analysis, the Ni-bead pull-down assay and the immuno-precipitation assay, are perfectly consistent with each other. Therefore, we conclude that Tyr139 and Phe249 of Xrcc3 play essential roles in Rad51C binding.

DISCUSSION

In the present study, we identified the Xrcc3 segment from amino acid residues 63–346 as the Rad51C-interacting region. This region contains the Walker-type ATPase motifs, which are highly conserved among seven human Rad51-class proteins, Rad51, Dmc1, Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3 (57). Recently, the crystal structure of the human Rad51 region (amino acid residues 97–339) was determined (58), which revealed that the structure of this Rad51 core region is quite similar to that of RecA. Therefore, Xrcc363–346 may also share a similar core region structure with those of the Rad51 and RecA proteins, although this region of Xrcc3 has the specific function to interact with Rad51C.

Mutational analyses of Xrcc3 identified Tyr139 and Phe249 as essential residues for Rad51C binding. Tyr139 and Phe249 of Xrcc3 are essential for Rad51C binding.
was perfectly conserved among the Rad51/RecA-class proteins as an aromatic residue (Fig. 4A). When Tyr139 of Xrcc3 was superimposed on the RecA crystal structure, the residue was located deep inside the protein molecule (Fig. 4B, red sphere). Since the amino acid residues that directly interact with Rad51C must be located on the surface of the protein molecule, the Xrcc3 Y139A mutation may indirectly affect the Rad51 binding, probably through a perturbation of the Xrcc3 structure. Actually, in the RecA structure, Phe92, corresponding to Tyr139 of Xrcc3, forms a hydrophobic core with Leu77, Ile80, Leu99, Ile111 and Leu114 (56). So far, no mutations at the hydrophobic core of RecA has been reported.

Figure 4. Sequence alignments of the Rad51/RecA-class proteins, and locations of the Xrcc3 amino acid residues mutated in the present study. (A) The amino acid sequence of the human Xrcc3 protein is aligned with the human Rad51B, Rad51C, Rad51D, Rad51 and Dmc1 proteins, and the E.coli RecA protein. (B) Locations of the amino acid residues, Tyr139, Phe180, Phe219, Phe223 and Phe249, of Xrcc3 superimposed on the crystal structure of RecA (56). Red, orange, green, blue and pink spheres indicate the locations of Tyr139, Phe180, Phe219, Phe223 and Phe249, respectively.
Interestingly, these hydrophobic residues are also conserved in Xrcc3, as Leu120, Pro127, Phe146, Leu170 and Leu173, respectively. The formation of the hydrophobic core around Tyr139 may be a key step in the proper folding of Xrcc3. The amino acid residue corresponding to Xrcc3 Tyr139 may be a central residue in the proper folding of the Rad51-class proteins.

In contrast, Phe249 of Xrcc3 was located on the surface of the protein molecule, when the residues were superimposed on the RecA structure (Fig. 4B, pink sphere). The mutation of Phe249 in Xrcc3 caused a significant decrease in the Rad51C-binding ability as evaluated by three independent assays, the two-hybrid analysis, the Ni-bead pull-down assay and the immuno-precipitation assay. Therefore, Phe249 of Xrcc3 is a strong candidate for one of the amino acid residues that constitute the interface for Rad51C binding. Interestingly, Phe249 of Xrcc3 is conserved in Rad51 as Phe259, which is an essential residue for Rad52 binding (59). The Rad51 Phe259 residue is located in the solvent accessible surface, when it is superimposed on the polymer structure of RecA (59). The Xrcc3 region around Phe249 is the protein-interacting region, which may have commonly evolved as a protein-binding surface among the eukaryotic Rad51-class proteins.

Intriguingly, a variant Xrcc3 gene, T241M, is associated with an increased risk of cancer (52). The Xrcc3 T241M variant has methionine instead of threonine at position 241, which is located very close to Phe249, suggesting that the variant may perturb the proper Xrcc3–Rad51C interaction. An in vivo study of the Xrcc3 T241M variant revealed that it can complement the Xrcc3-deficient phenotypes in mammalian cells (53). This small modification on the Rad51C-interacting region in the Xrcc3 T241M variant may increase the risk of undesirable correction during DNA repair through homologous recombination.

In addition to the homologous-pairing step, Xrcc3 also reportedly functions in later stages of the HRR pathway, such as in the resolution of intermediates formed by homologous pairing (60). Among the Rad51 paralogs, Rad51B preferentially binds a synthetic Holliday junction, which mimics an

Figure 5. Mutational analysis of the Xrcc3–Rad51C interaction by the yeast two-hybrid system. Yeast strains grown on SD plates with histidine (top row) and without histidine (middle row) are shown. The β-galactosidase activities, which were induced by the Xrcc3–Rad51C interaction, were detected by the X-Gal filter assay, and the results are shown in the bottom row. Lane 1 indicates a negative control with an empty vector instead of the Xrcc3 vector and lane 2 indicates a positive control with the wild-type Xrcc3 protein. Lanes 3–8 indicate experiments with the Xrcc3 point mutants, F30A, Y139A, F180A, F219A, F223A and F249A, respectively.

Figure 6. Biochemical analyses of the Xrcc3–Rad51C interaction. (A) SDS–PAGE (15–25% gradient) of cell-free extracts from cells that co-expressed His6-tagged Rad51C and FLAG-tagged Xrcc3 (or the FLAG-tagged Xrcc3 point mutants). The cell-free extracts (3 μl of supernatant) were subjected to SDS–PAGE (15–25% gradient). Bands were visualized by Coomassie brilliant blue staining. Lane 1 indicates the positive control with the wild-type Xrcc3 protein. Lanes 2–7 indicate the experiments with the Xrcc3 point mutants, F30A, Y139A, F180A, F219A, F223A and F249A, respectively. (B) Protein fractions bound to the ProBond resin were analyzed by SDS–PAGE (15–25% gradient). Bands were visualized by Coomassie brilliant blue staining. Lane 1 indicates the positive control with the wild-type Xrcc3 protein. Lanes 2–7 indicate the experiments with the Xrcc3 point mutants, F30A, Y139A, F180A, F219A, F223A and F249A, respectively. (C and D) Immuno-precipitation analysis with the anti-Rad51C antibody. Protein fractions precipitated with the anti-Rad51C antibody-conjugated rProtein A Sepharose were detected by the anti-Rad51C antibody (C) and by the anti-Xrcc3 antibody (D). Lane 1 indicates the positive control with the wild-type Xrcc3 protein. Lanes 8 and 9 indicate the negative controls without the co-expression plasmid for Xrcc3–Rad51C and with rProtein A Sepharose treated with non-immune serum, respectively. Lanes 2–7 indicate the experiments with the Xrcc3 point mutants, F30A, Y139A, F180A, F219A, F223A and F249A, respectively. Purified Rad51C and Xrcc3 were applied as markers [lane 10 of (C) and lane 10 of (D), respectively].
intermediate formed by homologous pairing (46). Rad51B forms a stable complex with Rad51C, like Xrc3. Rad51C may also function in the later stages of the HRR pathway with Xrc3 and Rad51B. Further studies are required to understand these broad functional spectra of the Rad51 paralogs in the HRR pathway.

ACKNOWLEDGEMENTS

We thank Dr Wataru Kagawa for assistance and discussions. This work was supported in part by the Bioarchitect Research Program (RIKEN), Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), and also by a Grant-in-Aid from the Ministry of Education, Sports, Culture, Science and Technology of Japan.

REFERENCES