Structural analysis of aligned RNAs

Björn Voß*

Experimental Bioinformatics, Institute of Biology II, Freiburg University, Schänzlestrasse 1, 79104 Freiburg, Germany

Received June 16, 2006; Revised and Accepted September 7, 2006

ABSTRACT

The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de.

INTRODUCTION

The interest in structural features of RNA has grown dramatically throughout the last decade. The major reason for this was the discovery of a new layer of regulation which is carried out by RNA molecules (1–3). Various classes of such RNA have been found. Among these are small-interfering RNAs (siRNAs) (4), microRNAs (miRNA) (5), smallRNAs (sRNA) (6–8), prokaryotic siRNAs (psiRNA) (9) and repeat-associated siRNAs (rasiRNA) (10–12). Together with the already known classes of RNA molecules, such as transfer RNA (tRNA) and ribosomal RNA (rRNA) they are today summarized as functional or non-coding RNA (fRNA and ncRNA, respectively).

A common feature of most classes of ncRNA is that their homology is only weakly defined by sequence similarity and more prominent by structural similarity. The best known examples are tRNAs which are characterized by the cloverleaf shape of their secondary structure. Hence, for the characterization of new ncRNAs it is essential to define a reasonable structure model which is common for all members. This can be achieved by either experimental structure determination or by bioinformatics analyses. Experimental procedures give reliable results but are laborious, while bioinformatics analyses are rather fast but less reliable. Hence, great efforts have been spend to improve bioinformatics in this area.

For single sequences, various tools have been developed which allows prediction of the structure having minimum free energy (13), suboptimal structures (14,15), kinetically favoured structures (16,17), base pair probabilities (18) and others. If multiple, functionally similar sequences (a class of ncRNAs) are known, the consensus structure which is common to all can be predicted. This can be achieved in different ways: First, by aligning the sequences and subsequently predicting the structure based on the alignment; Second, by predicting the structure for each individual sequence and performing an alignment of the structures (19–21); Third, by folding and aligning them simultaneously (22–25). All these approaches have their specific problems: Structure prediction based on sequence alignments requires good quality alignments, which are not always available; aligning secondary structures suffers from erroneous structure predictions; and simultaneously folding and aligning of RNAs is very computer intensive and thus makes use of heuristics or is restricted to pairwise analyses. For a review of available methods and their accuracy see (26).

In (27) the approach of abstract shapes of RNA was introduced. It allows a researcher to get an overview of possible shapes (classes of similar structures) and shreps (shape representative structure) an RNA can attain. Furthermore, with this method it is possible to rule out shreps of minor interest and to focus on the interesting ones. Later, this approach was extended to compute probabilities of shapes (28), in order to give some kind of measure for the impact of the corresponding shrep.

These methods have been used for the design of RNAcast (29), which predicts an abstract shape common to multiple sequences. Additionally, their incorporation into the process of consensus structure determination by aligning predicted...
secondary structures led to significant improvements (21). This encouraged me to further evaluate how the other ways of consensus structure prediction might be improved. Simultaneous folding and alignment is mainly restricted by its computational complexity. For this reason I focused on the remaining method, namely structure prediction based on sequence alignments.

This approach is implemented in various fashions in tools such as ConStruct (30), iterated loop matching (ILM) (31) and Pfold (32), but the only existing algorithm which uses the complete thermodynamic model is implemented in the tool RNAalifold (33). It is capable of predicting the ‘best’ structure which is common to all sequences of an alignment. The scoring is based on free energy contributions as well as on covariance contributions, which are rewarded, especially when base pairs are exchanged. The tool has recently proven its power, as it is a major part of RNAz (34), which was successfully used to predict ncRNAs in mammals (35).

An important feature that is lacking in the above algorithm is the possibility to also predict suboptimal consensus structures. In fact, they are in part accessible via the matrix of base pairing probabilities, but this does not allow exhaustive studies of all or near-optimal consensus structures. The prediction of suboptimal consensus structures is of importance for two reasons: First, the multiple sequence alignment is not perfect in the sense of secondary structure and might therefore lead to artefacts which alter the structure prediction; Second, as in the case of single sequences, structure prediction based on free energy minimization is erroneous, and including suboptimal solutions might overcome this problem. Furthermore, RNA molecules needing different structures for their function, such as ribozymes and riboswitches, bear the necessity of predicting multiple consensus structures being compatible with the sequence alignment.

Here I present the extension of the approach of abstract shapes of RNA to multiple sequence alignments, which is implemented in the tool RNAlishapes. This new method joins the power of shape abstraction and comparative structure prediction.

MATERIALS AND METHODS

RNA abstract shapes

The concept of shape abstraction for RNA secondary structures was introduced in (27). Abstract shapes are defined by means of abstraction functions preserving varying amounts of structural detail. Up to now, the common feature of these functions is that they abstract from the length of helical and unpaired regions. This means that shape abstraction retains only the nesting and adjacency pattern of helical and unpaired regions. The most widely used and also most abstract function [described as level-5 in (27)] totally abstracts from unpaired regions and retains only the nesting pattern of multiloops and hairpins. An abstract shape is defined by the shape in shape notation and the energetically most favourable structure attaining this shape, the shape representative (shrep). The shape notation can be seen as a derivative of the dot-bracket-notation for RNA secondary structures. It makes use of the underscore character ‘_’ representing unpaired bases and pairs of square brackets ‘[]’ representing helical regions. For example, the shape for the tRNA-cloverleaf using level-5 abstraction, which does not retain unpaired regions, is ‘[[]][]’.[1]’. This representation shows that this structure encompasses three hairpins (the three ‘[]’s) which are enclosed by a multiloop (the two outermost square brackets). Retaining information on unpaired bases (level-4 abstraction) would result in the shape ‘[[_][_][][_]_]’ for the structure shown in Figure 1A.

Central to the approach of abstract shapes is the idea that the shape can be used to classify structures into shape-identical classes. These can be computed efficiently and give an overview of what is there in the folding space. Additionally, this classification allows more elaborate analysis, such as computing shape probabilities (28).

Structure prediction

The RNAlishapes algorithm is implemented in the ADP-framework (36–38) which makes use of a grammar describing the search space, e.g. the folding space of RNA, and algebras which are used for scoring (and optimization), or derivation of structure representations, such as the dot-bracket-notation for RNA secondary structure.

The grammar used in RNAlishapes is identical to the one presented in (28). It describes RNA secondary structures without isolated base pairs and handles dangling bases in a unique way. In (39) the non-ambiguity of this grammar was proven, which enables statistical analyses of the complete folding space, e.g. structure counting or probabilistic shape analysis. It is possible to use this grammar, as in ADP the grammar derivations only contain indexes of the input. Hence, the grammar can handle nearly any kind of input as long as it is somehow sequential. A single RNA is a sequence of nucleotides and an alignment of RNAs is a sequence of columns with nucleotides and gaps.

ADP allows to apply predicates to productions in the grammar. The most important one is basepairing which checks if two positions i and j in the input can actually form a base pair. For a single sequence x it is defined as

$$\text{basepairing}(i,j) = \begin{cases} \text{true}, & (x_i,x_j) \in \text{BP}, \\ \text{false}, & \text{otherwise} \end{cases}$$

where

Extending this to an alignment A yields

$$\text{basepairing}(i,j) = \begin{cases} \text{true}, & (k_i,k_j) \in \text{BP}, \quad \forall k \in \text{rows} A \\ \text{false}, & \text{otherwise} \end{cases}$$

This would be a rather strong demand, as in all sequences of the alignment positions i and j would have to be able to form a base pair. Since sequence errors and misaligned positions can occur, they should get penalized rather than ruled out, and hence Equation 3 is changed to

$$\text{basepairing}(i,j) = \begin{cases} \text{true}, & \sum_{k \in \text{rows} A} \text{bp}(i,j,k) \geq f \\ \text{false}, & \text{otherwise} \end{cases}$$

$$\text{bp}(i,j,k) = \begin{cases} 1, & (k_i,k_j) \in \text{BP} \\ 0, & \text{otherwise} \end{cases}$$
where M is the number of sequences in the alignment and f a user defined threshold giving the minimum fraction of compatible sequences required.

The dissection into grammar and algebras in ADP makes it possible to re-use already existing algebras. This can be done for dot-bracket-notation, shape notation, and others, but not for free energy calculation and Boltzmann-weighted energies. Hence, these two have been modified in a way that the individual functions (taken from the existing algebras for single sequences) are applied separately to each sequence in the alignment and averaged over all sequences. In case of functions scoring base pairs, a covariance score (see below) is added. Thus, mean free energies and Boltzmann-weighted mean free energies with a supplemental covariance score can be computed.

Enhanced thermodynamic model

In the algorithm non-standard base pairs are allowed and also the gap character occurs, which is not the case for single sequence folding. In order to handle this, the energy model has to be adapted to these cases. The introduced
modifications are similar to those presented in Ref. (33) with a few additions for dangling bases and unpaired loop regions. In the case of non-standard base pairs, including base pairs with at least one gap-symbol, an energy contribution of 0.0 kcal/mol is used for computation. Non-standard base pairs do not get penalized at this point because this is done within the covariance score.

When evaluating the energy of a dangling base which appears to be a gap in some of the sequences, for these sequences the next non-gap element is taken to compute the contribution. I am aware of the fact that this base might appear to be a gap in some of the sequences, for these cases the next non-gap element is taken to compute the contribution. In order to account for this, the algorithm recalculates the length of long inserts occurred, lead to gap-rich regions in alignments, mutational events to take place. These, especially when unpaired regions. In functional RNA, the selective pressure loop types is negatively affected by the length of their internal, bulge and hairpin loops. The free energy of these dangle.

Covariance scoring

It is commonly accepted that the occurrence of different base pairs at the same position of a consensus structure gives additional evidence that this base pair is present in the native structure. Some algorithms, such as infernal (40), make use of this for homology detection. The basic assumption in this model is that these different base pairs occurred by a series of mutational events. The first mutation alters one base of the pair, which might result in a non-standard base pair. This can be compensated by a mutation in the second base, restoring the possibility of base pairing. Besides these compensatory mutations, base mutations may also be consistent with base pairing, e.g. G-C to G-U.

Positions showing such compensatory or consistent base exchanges are therefore good markers for structural importance and should get rewarded. For this purpose the covariance scoring introduced in (33) is used, which rewards compensatory and consistent mutations of paired positions. This scoring also adds a penalty for sequences with inconsistent bases (bases that cannot form a base pair). Next a quick recapitulation of this scoring is given: The covariance score \(\text{cv}_{ij} \) for positions \(i \) and \(j \) in the alignment \(A \) is defined as

\[
\text{cv}_{ij} = -C_{ij} + I_{ij}
\]

\[
C_{ij} = \sum_{a,b,a',b' \in \{A,C,G,U\}} f_{ij}(a,b) \cdot D(a,b,a',b') \cdot f_{ij}(a',b')
\]

\[
D(a,b,a',b') = \begin{cases}
0, \text{ not(basepairing}(a,b) | \text{ basepairing}(a',b')) \mid \\
1, a = a' \text{ xor } b = b' \\
2, \text{ otherwise}
\end{cases}
\]

\[
I_{ij} = \frac{1}{M} \sum_{x \in \mathbb{A}} \begin{cases}
0, x_i = x_j = \text{gap} | \text{ basepairing}(x_i, x_j) \\
1, \text{ otherwise}
\end{cases}
\]

where \(M \) is the number of sequences in the alignment. This term shows that the score is negative for co-varying base pairs, which is desired as stabilizing free energies are negative as well and, thus, this allows to still use minimization as the objective function.

Performance, implementation, availability

The asymptotical complexity for probabilistic analysis of an alignment of length \(N \) holding \(M \) sequences is \(O(p^2N^2-M) \) in memory and \(O(p^2N^2-M) \) in space where \(p \) depends on the shape abstraction chosen [see (27) for details]. For all other analysis modes they are \(O(N^2-M) \) and \(O(N^2-M) \), respectively. As \(M \) is in general much smaller than \(N \), it is also reasonable to abstract from \(M \), which results in \(O(p^2N^2) \), \(O(p^2N^2) \), and \(O(N^2) \), respectively.

These numbers are affirmed by empirical measurements of runtime and memory consumption. The dependence on sequence length is shown in Supplementary Figure S1 and on the number of aligned sequences in Supplementary Figure S2. These measurements were performed on an AMD Opteron 250 (2.4 GHz) machine with 16 GB RAM running under SuSE Linux 10.0 (64-Bit).

The tool RNAlishapes is implemented in the functional programming language Haskell and available as source code, as well as pre-compiled binaries for various platforms (Linux: i386, x86_64; Windows: i386) at http://rna.cyanolab.de. Note, that you need the Glasgow Haskell Compiler 6.4 (GHC 6.4) when compiling from source code. It is available at http://www.haskell.org/ghc.

RESULTS

Algorithm for structure analysis based on alignments

The most common way of predicting secondary structures of RNA uses dynamic programming (DP). Essential for this approach is the underlying scoring scheme. In case of RNA secondary structure this scoring scheme is composed of thermodynamic parameters (41–43) which have been derived experimentally and are based on the nearest neighbour model. Structure stabilizing elements have negative free energy (\(\Delta G \)) contributions. In most cases one is interested in the structure with minimum free energy (MFE-structure) and, hence, the
optimization objective is minimisation. DP algorithms for free energy minimisation are based on the dissection of the structure into various loop types, namely stacking region, hairpin loop, bulge loop left/right, internal loop, multiloop and external loop. For complexity reasons, crossing base pairs, such as in pseudoknots, are most often neglected but may also be incorporated (44,45). In general, these are the ingredients of a DP-algorithm for predicting the structure of an RNA molecule based on its sequence.

When extending this to the folding of a set of aligned sequences several difficulties arise. First, insertions and deletions in the alignment lead to gaps which need special treatment and, second, two aligned positions may be able to base pair in only some of the sequences, which also has to be accounted for. The handling of gaps is incorporated for two different cases: First, gaps in base pairs are penalized and, second, unpaired loop regions are evaluated gap-aware, meaning that gaps are removed for their evaluation. Details about this are given in the Methods section.

Given that the above difficulties are solved satisfactory, the process of structure prediction for aligned RNA sequences is similar to folding a single sequence. The major difference is, that a specific energy function is not only applied to one (sub)sequence, but rather to several and that these several results have to be combined for further computation. In the simplest approach, which is also used within RNAlishapes, the mean of the individual energies is taken, resulting in an algorithm predicting the consensus structure with minimum mean free energy (MmFE) for the aligned sequences. Additionally, a covariance contribution accounting for compensatory and consistent mutations is added to this mean free energy, as outlined in the Materials and Methods section.

Functionality

This section should give a short overview of the functionality of RNAlishapes. Examples showing the applicability follow in the next section. Given a multiple sequence alignment, e.g. produced by ClustalW (46) or T-Coffee (47), RNAlishapes predicts the consensus structure attaining MmFE for which suboptimal consensus structures should be computed. As for single sequences, the number of suboptimal solutions grows exponentially—but much slower as for single sequences—with the sequence length and, as a result, the user may be overwhelmed by hundreds of structures in the output. This can be avoided by using shape abstraction which computes shapes together with shreps and thereby significantly and reasonably reduces the number of suboptimal solutions. Shape abstraction can also be used to compute probabilities of shapes for aligned RNAs as introduced for single sequences in (28). This is based on the partition function approach to secondary structure prediction and can be described as Boltzmann-weighted structure/shape counting. A variant of this is statistical sampling which, for single sequences, was introduced in (48). In this mode individual structures are computed according to the probabilities obtained from the partition function. Repeating this for a reasonable number of times gives a representative set of the Boltzmann-ensemble of structures.

Besides these major analysis modes, the user can fine tune the scoring by giving a weight for the covariance contribution and by defining a minimum fraction of sequences which must be able to form a base pair comprising two specific columns of the alignment. By default, at least one sequence is required to actually be able to form a base pair. Additionally, the user can choose to ignore, so-called unstable structures. These are (sub)structures in the external loop or multiloop which have non-negative free energy. For the output the user can choose to either get the consensus sequence with the most frequent base at each position or in IUPAC-notation.

APPLICATIONS

tRNA

tRNAs form the best-studied family of ncRNA and are characterized by their cloverleaf structure. This secondary structure model is common to all tRNAs, notwithstanding the fact that numerous tRNAs need specific base modifications to form it (49–51). Although these modified bases are not handled in standard folding algorithms, using alignments of tRNAs lead to correct prediction of the cloverleaf consensus. The result of applying RNAlishapes to 10 tRNA sequences obtained from Rfam (52) is summarized in Figure 1. The cloverleaf structure has been predicted correctly and, furthermore, the analysis shows that the cloverleaf shape is the only shape with reasonable probability, indicating that this is a very well-defined consensus shape. Additionally, the D-Loop seems to be the least stable element, albeit on a high level, of these tRNAs as it is only present in two of the four predicted shreps.

Attenuators of bacterial trp-operons

Formation of alternating structures in mRNA leader regions is an important mechanism of gene regulation. Several variants exist, which all share the common feature of two competing structures, one of which either inhibits translation initiation or leads to premature termination of transcription. The transition between the two structures is triggered by an external effector, e.g. protein, tRNA, or is formed co-transcriptional, as in classical attenuators. One such classical attenuator is found in front of the trp-operon of several Corynebacterium spp. and Streptomyces spp., which have recently been studied in detail in (53). I extracted the sequences of the leader regions and performed a multiple sequence alignment using ClustalW with DNA parameters. Subsequently, RNAlishapes was used to predict energetically favourable consensus structures. The results are summarized in Figure 2 and show two conformations which are mutually exclusive, similar in score and also explain the attenuation mechanism. The stem-loop at the 3' end of structure A is a terminator hairpin, leading to premature termination of transcription. It achieves a better score as structure B, resembling the fact that structure A corresponds to the native state of this conformational switch.

Low alignment quality

A major advantage of the algorithm presented here is the gap-aware energy evaluation as described in the methods section. To my opinion, this is a major advantage compared to
Figure 2. Alternate consensus structures for trp-Attenuators. Analysis of trp-operon leaders from different *Corynebacterium* spp. and *Streptomyces* spp. (A) MmFE structure for the alignment shown in (C). The blue hairpin corresponds to the terminator hairpin. (B) Shrep of the second best shape. The consensus structure comprises the same sequence regions as the structure in (A), making these two structures mutually exclusive. (C) Alignment of eight trp-operon leaders from different *Corynebacterium* spp. and *Streptomyces* spp. Colours indicate the different stems. Bases paired in both alternative structures are coded by the mixed colour.
RNAalifold, especially when analysing sequences with low pairwise identities. An example for this are T-box sequences which have been analysed in (53). The multiple sequence alignment (see Figure 3) of these 16 sequences shows an average percentage identity of ~59.1%. RNAalifold predicted only a 3 bp hairpin (see Figure 3, last line), while RNAlishapes was more successful (see Figure 3, second last line) and was able to predict at least one conformation of the T-box switch. The interesting fact about this structure is, that an internal loop is predicted, whose 3'-unpaired region consists mainly of gaps due to an insert in only one sequence. The scoring of RNAalifold penalizes all sequences with this length and, therefore, favours another structure without this internal loop. In response to the ‘bad’ alignment, RNAlishapes was unable to predict the second functional conformation of the T-box switch, e.g. the sequestor hairpin, which prohibits binding of the ribosome to the ribosome binding site.

Figure 3. Consensus structure of T-box leader. T-box leader sequences from 16 species have been aligned using ClustalW. The resulting alignment has an average percentage identity of ~59.1% and shows gap-rich regions. Consensus structures and their score (in parentheses) computed by RNAlishapes and RNAalifold are shown on the second last and last line, respectively.
Prediction accuracy

The result of the previous applications raises the question whether RNAshapes achieves a good prediction accuracy in general. In order to assess this I chose two different data-sets. Data-set I is composed of the medium and high mean pairwise sequence identity alignments for *Escherichia coli* RNase P, *Saccharomyces cerevisiae* tRNA-PHE and *E. coli* SSU rRNA from BRAliBASE I (26). The alignment for *E. coli* LSU rRNA was not included because of its length which causes too high memory consumption. But still, this reduced set allows comparison of the prediction accuracy of RNAshapes with the tools tested in (26). For RNAshapes the shrep of the energetically most favourite shape was used for determining structure prediction accuracy. Sensitivity, selectivity and Matthews correlation coefficient (54) were used for determining structure prediction accuracy. Sensitivity, selectivity and correlation coefficient (Matthews correlation coefficient) for consensus structures predicted by RNAshapes (S) and RNAalifold (F) for U5 snRNA, for which only seven sequences with a mean pairwise sequence identity of ~66% are present in Rfam. For the families present in data-set II the consensus structure contained in the Rfam-model was taken as the reference structure when comparing predicted consensus structures. Prediction of consensus structures was carried out for the original (seed) alignment obtained from Rfam as well as for an alignment of the sequences produced by ClustalW. In order to compare the results this was done using RNAshapes, i.e. the shrep of the optimal shape, and RNAalifold. The results are summarized in Table 2.

Overall, RNAshapes performed quite well, achieving a sensitivity, selectivity and correlation of 60–100%, 59.5–100% and 0.596–1.000 respectively, which is comparable to other tools, such as RNAalifold, Pfold and ILM, but also to alignment-free methods such as Carnac (55) and Dynalign (24) [see (26) for Details]. The worst accuracy was achieved for the high similarity set of *E. coli* RNase P RNA, for which the authors of the original study note: ‘RNase P is a difficult data-set to study. Five sequences in the high similarity data-set are truncated at both the 5' and 3' ends (due to the primers used for sequencing these).’

The tendency that RNAshapes performs especially good on medium similarity alignments is substantiated by the results shown here. However, it seems to be the quality of

Table 1. Prediction accuracy for data-set I

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>PI (%)</th>
<th>S. cerevisiae tRNA-PHE</th>
<th>E. coli RNase P</th>
<th>E. coli SSU rRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFSFSF</td>
<td></td>
<td>% Sens. % Sel.</td>
<td>% Sens. % Sel.</td>
<td>% Sens. % Sel.</td>
</tr>
<tr>
<td>RNAshapes</td>
<td>H</td>
<td>100.0 100.0</td>
<td>60.0 59.5</td>
<td>0.596 70.9</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>100.0 100.0</td>
<td>69.1 75.2</td>
<td>0.720 81.2</td>
</tr>
<tr>
<td>RNAalifold*</td>
<td>H</td>
<td>90.5 100.0</td>
<td>78.9 77.8</td>
<td>0.782 59.8</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>77.8 100.0</td>
<td>57.4 57.4</td>
<td>0.571 84.4</td>
</tr>
<tr>
<td>ILM*</td>
<td>H</td>
<td>76.2 69.6</td>
<td>43.7 36.5</td>
<td>0.395 43.0</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>100.0 75.0</td>
<td>70.4 55.1</td>
<td>0.620 51.3</td>
</tr>
<tr>
<td>PFOLD*</td>
<td>H</td>
<td>95.2 100.0</td>
<td>66.2 88.7</td>
<td>0.765 70.9</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>100.0 100.0</td>
<td>87.0 92.2</td>
<td>0.895 n.c.</td>
</tr>
</tbody>
</table>

Sensitivity (Sen.), selectivity (Sel.) and correlation coefficient (MCC, Matthews correlation coefficient) for consensus structures predicted by RNAshapes, RNAalifold, ILM and Pfold for RNase P, tRNA-PHE and SSU rRNA. PI = mean pairwise sequence identity, H = high, M = medium, n.c. = not computed, * = data taken from Ref. (26).

Table 2. Prediction accuracy for data-set II

<table>
<thead>
<tr>
<th>RNA family</th>
<th>Alignment Source</th>
<th>Length (nt)</th>
<th>PI (%)</th>
<th>% Sensitivity</th>
<th>% Selectivity</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source</td>
<td></td>
<td></td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>U5 (RF00020)</td>
<td>Rfam</td>
<td>122</td>
<td>~85</td>
<td>96.7</td>
<td>96.7</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>122</td>
<td>~85</td>
<td>96.7</td>
<td>93.3</td>
<td>96.7</td>
</tr>
<tr>
<td>5S (RF00001)</td>
<td>Rfam</td>
<td>120</td>
<td>~85</td>
<td>61.8</td>
<td>61.8</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>120</td>
<td>~84</td>
<td>61.8</td>
<td>67.6</td>
<td>72.4</td>
</tr>
<tr>
<td>Group II intron (RF00029)</td>
<td>Rfam</td>
<td>84</td>
<td>~83</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>84</td>
<td>~83</td>
<td>89.5</td>
<td>89.5</td>
<td>100.0</td>
</tr>
<tr>
<td>SRP bac. (RF00169)</td>
<td>Rfam</td>
<td>104</td>
<td>~84</td>
<td>90.0</td>
<td>90.0</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>104</td>
<td>~83</td>
<td>93.3</td>
<td>90.0</td>
<td>96.6</td>
</tr>
<tr>
<td>SRP euk. (RF00017)</td>
<td>Rfam</td>
<td>310</td>
<td>~83</td>
<td>86.0</td>
<td>82.6</td>
<td>93.7</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>310</td>
<td>~83</td>
<td>66.3</td>
<td>66.3</td>
<td>72.2</td>
</tr>
<tr>
<td>6S (RF00013)</td>
<td>Rfam</td>
<td>203</td>
<td>~66</td>
<td>69.8</td>
<td>69.8</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>ClustalW</td>
<td>203</td>
<td>~66</td>
<td>90.6</td>
<td>58.5</td>
<td>96.0</td>
</tr>
</tbody>
</table>

Selectivity, sensitivity and correlation (Matthews correlation coefficient) for consensus structures predicted by RNAshapes (S) and RNAalifold (F) for U5 snRNA, 5S RNA, Group II intron, bacterial signal recognition particle (SRP) RNA, euk. SRP RNA and 6S RNA. In the case one approach performs better, the corresponding value is given in bold. (PI = mean pairwise sequence identity, Rfam = Rfam seed alignment, ClustalW = realigned sequences from Rfam seed alignment using ClustalW).
the alignment rather than the average sequence similarity which makes the difference and seems to have smaller effects on RNAlishapes, which is especially reflected by the analysis of the realigned 6S RNA. Here, RNAlishapes significantly outperforms RNAalifold. Interestingly, the results in Table 2 show that the alignment obtained from Rfam is not always optimal. The predicted consensus structure is in some cases, e.g. 6S and bact. SRP, more accurate when the sequences are realigned using ClustalW.

DISCUSSION

The concept of structure prediction for aligned RNAs has become a prominent method in various tasks of RNA bioinformatics. The original aim of consensus structure prediction was extended to assess structural significance and used to predict potential ncRNA genes (35), which was shown to be a very powerful approach. For such newly predicted RNA genes it is of general interest to derive a sequence/structure-model describing it. This means to get information about structural details, such as regions of structural stability or stretches which are mainly unpaired. At this point RNAlishapes comes into play. It allows to analyse the aligned RNA sequences in various ways and, thus, gives insight into structural features. Complete suboptimal structure prediction can be used to analyse the complete or part of the folding space. For single sequences such analyses are provided with tools, such as barriers (56), paRNAss (57) or the approach presented by Kitagawa *et al.* (58).

An emerging research area are small RNAs in bacteria and their targets (59). A major problem in predicting targets of small RNAs is to find those targets which show complementarities in mainly unpaired regions. This means that the target has to have accessible targeting sites. The prediction of unpaired regions for single RNAs can be done by drawing statistical samples from the Boltzmann-ensemble of structures. Now, for each individual base the frequency of being unpaired can be approximated from this sample. In the case that homologous targets are known, this approach can be extended to the aligned set of the targets using RNAlishapes, which is likely to give more reliable results.

A major method presented in this paper is shape abstraction for aligned RNAs, which combines the power of alignment folding with the charm of abstract shapes of RNA. It allows to assess structural diversity, such as for attenuators and riboswitches, as well as structural well-definedness, such as for aligned tRNAs. The two alternating conformations of bacterial trp-operon leaders could be identified by performing a standard ClustalW multiple sequence alignment followed by shape abstraction using RNAlishapes. This shows how RNAlishapes helps to make predictions of function out of structural analyses, or at least to identify the consensus shape of a family fitting best with further knowledge, e.g. from experimental structure probing.

The focus during the design of RNAlishapes was on porting various kinds of structural analysis methods from single sequences to aligned sequences. More or less unintentionally, an accurate method for consensus structure prediction was developed. RNAlishapes achieves an overall prediction accuracy, which is comparable to that of RNAalifold, Pfold and others. Especially, the good performance on medium/low quality alignments is interesting. To my opinion, this is achieved by the gap-aware handling of unpaired regions, which alleviates alignment effects in unpaired regions with low homology. Nevertheless, still the major problem the tool is facing is the rather poor alignment quality achieved in the initial sequence alignment step. This is mainly due to the use of sequence alignment algorithms, which totally neglect structure information. A promising approach would be to use structure enhanced methods, such as MARNA (21) or RNAforester (20) for the initial alignment step.

With RNAlishapes I present a tool which combines the power of various analysis methods for RNA secondary structure with the benefits of inferring evolutionary conservation by multiple sequence alignments. Through this it is now possible to infer functional properties, such as conformational switching, from in-depth analyses of the consensus folding space of aligned RNAs. The adapted energy model, with gap-aware evaluation of unpaired regions and covariance scoring of paired positions, improved the predictive power, especially for alignments with medium quality. This directly raises the question if the prediction of RNA genes, such as with RNAz (34), could also be improved through the incorporation of RNAlishapes. Unfortunately, this would also require to recompute all the background statistics and training data used by the various support vector machines within RNAz.

This enormous amount of data to be analysed requires a performance improved version. While the ADP-Haskell framework is well-suited for algorithm development and testing, the Haskell background hampers fast and memory efficient programs. This will, hopefully soon, be overcome by porting RNAlishapes to C using the ADP-Compiler (60), which is still work in progress (P. Steffen, personal communication). In parallel this step would enable the use of the existing graphical user interface for RNAshapes (61) with RNAlishapes.

Although it was not the intention to improve consensus structure prediction, I think that RNAlishapes might become part of a standard approach for this purpose. This definitely needs a suitable algorithm for aligning multiple sequences. Ideally, such an algorithm would allow to already take structural information into account, but only with a small score contribution, e.g. matching two base pairs gets 10% of the score for matching two bases. Available methods, such as MARNA or RNAforester might be good candidates, but could also be disproportionate for this task and a more lightweight but very specialized RNA alignment tool might fit better.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.

ACKNOWLEDGEMENTS

I want to thank Wolfgang R. Hess for providing me the infrastructure and for helpful discussions during preparation of this manuscript. This project was funded by a grant from the Landesstiftung Baden-Württemberg (P-LS-RNS/40). Funding to pay the Open Access publication charges for this article was provided by the Landesstiftung Baden-Württemberg.

Conflict of interest statement. None declared.
REFERENCES

