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Supplementary methods 
Signal track generation 
The ENCODE datasets span five main data types across a variety of cell-types and treatment 
conditions, as summarized in Supplementary Table 1. The complete list of datasets is available 
at the ENCODE Data Portal (http://genome.ucsc.edu/ENCODE/downloads.html). Each dataset 
is the result of at least two biological replicates. For a select subset of targets, multiple 
laboratories generated their own versions of the datasets. Laboratories generated datasets 
using a variety of protocols and with a diversity of sequencing parameters (such as library size, 
number of mapped reads, and read lengths). Hence, we developed a uniform processing 
pipeline to generate genome-wide signal coverage tracks by pooling data from multiple replicate 
experiments and combining appropriate datasets across labs when available 
(https://sites.google.com/site/anshulkundaje/projects/wiggler). We implemented this pipeline 
using the Wiggler package (http://code.google.com/p/align2rawsignal). It accounts for the 
individual characteristics of and differences between specific datasets and data types. 

First, we downloaded from the ENCODE Data Portal all Binary Alignment/Map (BAM) files 
containing reads mapped to the GRCh37 human genome assembly submitted by the ENCODE 
production groups. To eliminate artificial differences between datasets due to different mapping 
stringency parameters we created custom unique-mappability tracks for the GRCh37 male and 
female genomes 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/referenceSequences) for read 
lengths ranging from 20 to 54. For a particular read length k, we labeled each coordinate on the 
‘+’ strand of the genome as unique if the k-mer starting at that position and continuing 3' 
mapped uniquely to only that position with no mismatches. If a position x on the ‘+’ strand is 
labeled unique, it implies that the k-mer starting at position x + k − 1 on the ‘−’ strand is also 
unique. Hence, one can infer mappability values for any position on the ‘−’ strand directly from 
the ‘+’ strand mappability track. The mappability tracks are available for downloading 
(http://code.google.com/p/align2rawsignal). We used the mappability tracks to filter BAM files by 
discarding all reads that mapped to non-unique locations in the genome. 

The sequenced reads in each dataset represent ends of target DNA fragments isolated in 
various ways depending on the data type. The experimental protocols result in a variety of 
characteristic strand-specific distribution of sequenced reads around target sites. For example, 
ChIP-seq datasets typically show mirror peaks of mapped reads on the ‘+’ and ‘−’ strand around 
binding sites of the target protein separated by a characteristic distance equal to the average 
lengths of the immunoprecipitated DNA fragments (44,45). Therefore, in order to faithfully 
represent the target of interest and generate signal tracks that show peak signal at the target 
binding site rather than in flanking regions, it is important to account for this strand-specific read-
shift. We used strand cross-correlation analysis (44,46) to infer the predominant read-shifts for 
each replicate in each dataset. Kundaje et al. discuss read distribution characteristics of the 
different data types. The complete set of dataset-specific read-shift parameters are provided at 
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https://sites.google.com/site/anshulkundaje/projects/wiggler. The Duke and University of 
Washington (UW) production groups used very different protocols for performing DNase-seq, 
and the read-shift characteristics of their datasets diverged greatly, so we did not pool datasets 
across the two labs, unlike for ChIP-seq. 

Multiple filtered BAM datasets, Bi, corresponding to replicates (or similar experiments from 
multiple labs), along with their respective estimated read-shifts, Li, were provided as input to the 
signal processing engine. For each dataset Bi, we performed the following procedure: 

(1) We shifted read starts in the 3' direction by Li / 2. 

(2) We computed shifted read-start coverage at each position on both DNA strands. 

(3) For each genomic-location x and strand s, we then computed a smooth weighted sum of 
read counts Fis using a kernel of width w centered at x. We used different values of w for 
different data types (https://sites.google.com/site/anshulkundaje/projects/wiggler). For each data 
type, we selected w based on the maximum estimated fragment length for any dataset of that 
type (for any dataset i of data type j, we expect that wjj ≥ Lij), and the general characteristics of 
the data type. For example, we set w = 300 for histone mark datasets because we expected 
that the sonication and size-selection protocols for the corresponding experiments would 
generate DNA fragments of size ≤ 300 bp. For all data types except nucleosome data, we used 
the Tukey window kernel, which has a central window of length cw (cw ≤ w) with weights equal to 
1. The weight then tapers to 0 on either end following a cosine curve. We typically set cw = Li. 
This procedure of shifting reads and then aggregating over a window is equivalent to a smooth 
read extension of length w. Hence, this aggregate signal value at each position represents the 
approximate number of sequenced fragments that overlap that position. The use of a common 
overall smoothing length for all datasets of a particular data type while allowing for dataset-
specific (and replicate-specific) read-shifts provides equivalent and comparable resolution 
across all datasets of a data type while accounting for the dataset-specific fragment length 
distributions. For nucleosome data, which requires finer smoothing to distinguish individual 
nucleosomes, we used a sharper tri-weight kernel with a window size of 60 bp around each 
position after shifting reads by the dataset-specific read-shift (typically 148 bp / 2 = 74 bp) 
(Valouev et al. 2011). 

(4) We added together the unnormalized fragment counts from both strands at each position x 
(Fi(x) = Fi+(x) + Fi−(x)). 

(5) Since we used only unique mapping reads from each dataset, we needed to distinguish 
between mappable positions with zero signal for a particular dataset from those positions that 
were simply not uniquely mappable (missing data). We also needed to normalize Fi(x) for the 
total number of mappable locations that contribute signal to any position x. Different datasets 
also have different library sizes. In order to compute signal on a common scale across all data 
sets and data types, we needed to normalize for differences in number of replicates (or pooled 
datasets) and the total number of mapped reads. We accomplished these normalizations thus: 

(a) Using the binary unique-mappability track corresponding to the read length for Bi, we 
computed the local cumulative mappability Mi(x), for each position x by using the same 
read-shift and aggregation smoothing kernel window parameters. Mi(x) represents the 
effective number of positions in the local kernel window around x that can potentially 
contribute read counts based on mappability. 
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(b) For each Bi, we then computed the expected fragment counts at each position x if all 
the mapped reads were uniformly distributed over all uniquely mappable locations on 
both strands in the genome Ei(x) = (Mi(x) Ri) / Gi where Ri is the total number of mapped 
reads in Bi and Gi is the total mappable genome size over both strands 

(c) We then add fragment counts from all Bi at each position x: F(x) = Σi Fi (x). 

(d) We also add expected fragment counts from all replicates/datasets at each position: 
E(x) = Σi Ei(x). 

(e) We then compute the normalized signal S(x) at each position x as the fold-change of 
the observed fragment count over the expected fragment count. S(x) = F(x) / E(x). This 
signal scale is similar to the reads per kilobasepair per million mapped reads (RPKM) 
measure often used to represent normalized RNA-seq read counts. 

(6) Finally, we discard signal at positions that lie in regions of low dispersed mappability as 
these locations typically show mapping artifacts and also because the signal normalization 
procedure can over-correct for the small number of locations within the smoothing window that 
contribute signal. Specifically, we discard positions x that have E(x) ≤ 0.25 maxx E(x), including 
positions lying in completely unmappable windows. We represent the signal at such locations as 
missing data, but assign a non-negative signal value to all other positions. Therefore a position 
with signal value 0 is a reliable mappable location, but no reads map to it in a particular dataset. 
Sample screenshots of different types of data (ChIP-seq input control, CTCF and H3k4me3) are 
shown in Supplementary Figures 1–3. 

All normalized signal tracks in bedGraph and bigWig formats are available at 
https://sites.google.com/site/anshulkundaje/projects/wiggler, including the tracks used as 
segmentation input (Supplementary Table 1). 

Assignment of mnemonics to Segway labels 
We assigned short human-interpretable mnemonic codes to the Segway segmentation labels 
through a combined process of comparing emission parameters with known biological features, 
and examining the enrichment of the labels for various genome annotations. One can easily 
identify TSS-associated labels by their enrichment of activating histone marks, such as 
H3K4me3 and H3K27ac, and strong Pol2, DNase, and FAIRE signal. These labels also show 
strong enrichment near the TSS in gene structure aggregation plots (Figure 1, Supplementary 
Figure 4). We segregated TSS-associated labels into two categories—Tss and TSS-flanking 
(TssF)—based upon the shape of the aggregation plots. The Tss labels are also associated with 
higher signal levels than the TssF labels. We assign labels that associate with the promoter of 
protein-coding genes in a less punctate fashion to the promoter (Prom) mnemonic, with 
modifiers for flanking (F) or weak (W) labels based upon the strength of the H3K4me3 and 
H3K27ac signal, and the shape and magnitude of the aggregation plots. Within the H1 hESC 
and HepG2 cell lines, we observe TSS-associated labels that show evidence of a bivalent (47) 
or poised promoter label (PromP), based on the simultaneous presence of H3K27me3 and 
H3K4me3. 

We identify elongation labels primarily on the basis of their enrichment within genes, as shown 
on the gene aggregation plot, as well as the presence of histone mark H3K36me3. Among the 
various elongation labels, we assign the “Gen3'” label to those that show a relatively strong 
enrichment near the 3' end of the gene, although we note that these labels do not solely occur 
near the 3' end. 
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Strong enrichment for CTCF signal provides the rationale for the “Ctcf” label. In some cell types 
there is an additional CTCF label with relatively higher levels of open chromatin, which we call 
“CtcfO.” 

We find enhancers primarily by looking for a pattern of high H3K4me1 signal and lower 
H3K4me3 signal. The resulting labels are separated into “weak” and “flanking” categories based 
upon weaker H3K4me1 and H3K27ac signals. 

In the H1 hESC, HeLa-S3, and HUVEC cell lines we observe a label for which the emission 
parameter associated with FAIRE is relatively large, but shows no signal for DNase and no 
striking pattern in the gene aggregation plots. Accordingly, these labels are assigned the 
mnemonic "Faire." Similarly, in H1 hESC, we observe a label that shows strong signal in the 
DNase track from Duke, but not in the UW DNase data. Indeed, this label does not show strong 
signal for any other track. It is assigned the mnemonic "DnaseD." 

Among the remaining labels, we assign a label to a repressed (Repr) mnemonic if the 
associated emission parameters indicate the presence of repressive histone mark H3K27me3. 
A label is quiescent (Quies) if it shows no signal in any track. In general, the emission 
parameters associated with the "Control" signal are difficult to interpret and are largely ignored 
in the assignment of mnemonics. The remaining labels exhibit some weak signal across the 
various tracks (except for Control and H4K20me1), and we call them "Low". 

Creating the combined segmentation 
First, for each segmentation, we identified states that we could group based on similar signal 
patterns. For the ChromHMM segmentation, the states were grouped manually based on the 
mean emission parameters across multiple cell lines. For the Segway segmentations run 
independently over multiple cell lines, multiple hierarchical clustering techniques were applied 
across all states in the segmentations to identify the most consistent clustering of states, both 
across cell lines and with respect to existing biological knowledge. Using these criteria, the 
Ward clustering on Euclidean distances between mean signal scores transformed to the unit 
interval was chosen to cluster the Segway state labels. Second, we identified pairwise 
relationships between the ChromHMM and Segway merged states using both overlap 
calculations and manual annotation (Supplementary Figure 10). Pairs of states that were viewed 
as concordant were assigned to one of the seven state classes. Regions of the genome 
occupied by concordant states between the two initial segmentations were reassigned to the 
new summary labels. In some cases there were combinations of states between the two 
segmentations that could not be reconciled, and these combinations were viewed as discordant. 
Regions with discordant states were not assigned a state label, and were dropped out of the 
summary combined segmentation. Because there are multiple concordances between 
segmentations, the general effect of this process was to produce longer continuous states 
particularly compared to Segway, but at high resolution the exact state boundaries are clipped 
down to the region of concordance.  

Enrichment/depletion of RNA-seq in segmentation classes 
We used ENCODE Project RNA contig data 
(ftp://genome.crg.es/pub/Encode/data_analysis/ForDeadZones/Contigs_IDR0.1_CSHL.tar.gz) 
to investigate how enriched segmentation labels are for different kinds of RNA. This data 
comprises the ENCODE CSHL RNA-seq contigs (continuous regions covered by uniquely 
aligned reads) that passed irreproducible discovery rate (48) threshold of 0.1 for a given 
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experiment performed in two biological replicates, and combines contigs from both from shotgun 
long RNA-seq and short RNA-seq. 

We counted the number of contigs of each annotated transcript category (a "biotype") that 
overlaps the labels in the 12 Segway and ChromHMM segmentations in each individual cell 
type. The enrichment or depletion of each biotype in each label is shown in Figure 4. 

We have made available the Python, R, shell script, and C code used to perform this analysis at 
http://www.bx.psu.edu/~rsharris/encode/manuscripts/segmentation/bundle_segmentations_vs_r
naseq_biotypes.tar.gz. 

Fraction of protein-coding genes overlapping RNA-seq contigs 
We combined protein-coding transcripts from GENCODE annotation levels 1–3 (validated, 
manually-annotated, and automatically-annotated transcripts; 
ftp://ftp.sanger.ac.uk/pub/gencode/release_7/gencode7_GRCh37.tgz), merging transcripts with 
the same gene symbol. This procedure results in nearly all genes as single intervals, but a few 
multi-interval genes then remain (20,677 genes, 20,713 intervals). We then tested those genes 
for overlap with all labels in the 12 Segway and ChromHMM segmentations in each individual 
cell type, creating a list of genes and intervals that overlap each label by at least 1 bp of overlap, 
and truncating to the overlap intersection. The number of distinct gene names identified in this 
step is the denominator in the plots in Supplementary Figure 20. 

On a state-by-state basis, the truncated genes were tested for overlap with the same cell RNA-
seq contigs. Only contigs annotated as protein coding were used, and 1 bp of overlap was 
considered sufficient. Of those truncated genes that have overlap, the number of distinct gene 
names is the numerator in the plots. 

We have made available the Python, R, shell script, and C used to perform this analysis at 
http://www.bx.psu.edu/~rsharris/encode/manuscripts/segmentation/bundle_segmentations_vs_r
naseq_biotypes.tar.gz. 

Distribution of RNA expression score for protein coding genes 
We tested the truncated genes from the previous section for overlap of at least 1 bp with 
protein-coding RNA-seq contigs from the same cell type on a label-by-label basis. We collected 
the annotated expression scores from these contigs, and used only the maximum expression 
score for each interval that had more than one contig. We then used these scores as the data 
displayed in the box plot in Figure 4. 

Enrichment and depletion of repeats and mappable regions in 
segmentation labels 
We merged together all RepeatMasker (49) regions, as downloaded from the UCSC Table 
Browser, and then used the merge to determine which segmentation bases intersected repeat 
bases. We did not use repeat family information in this analysis.  

We derived uniquely mappable regions from the 50-mer mappability track, on the UCSC 
Genome Browser, by first extracting intervals with a mapping value of 1.0 (indicating unique 
mappability along one strand). To allow for reads that are uniquely mappable on the opposite 
strand, a position x is considered mappable if a read beginning at x or an opposite strand read 
ending at x is unique. Thus the union of the intervals with a copy of the intervals shifted 3' by 49 
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bp yields regions which are uniquely mappable along at least one strand. The number of bases 
intersecting each state was then counted. 

The expected number of bases for a feature and label is then derived from the total base count 
for that feature and the percentage of bases covered by that label. For example, if a label 
covers 20% of the genome, we expect 20% of the feature bases to occur in this label. 

Emission parameter heat maps 
We used Segtools (50) to create heat maps of emission parameters (Figure 1, Supplementary 
Figure 6). To increase the contrast in Segway emission parameter visualization, we truncated 
the color palette at the 95th percentile of mean values. 

Gene structure and p300 enrichment aggregation 
We used Segtools (50) to create the gene structure (Figure 1, Supplementary Figure 4) and 
p300 enrichment (Supplementary Figure 18) aggregation plots. We used GENCODE (51) 
version 7 levels 1–3 gene annotations. For the p300 plots, we used SPP (44) peak calls of 
HepG2 p300 peaks provided by the ENCODE Project (52,53) 

Precision and recall 
We calculated precision and recall between segmentations and GENCODE genes with 
reproducible cap analysis gene expression (CAGE) support using Segtools (50). We obtained 
data on the number of tags from CAGE experiments mapped to clusters overlapping a 
GENCODE TSS 
(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev7_CAGE_TSS_clusters_June20
11.gff.gz ; ENCODE Project Consortium 2012; Djebali et al. 2012), and deemed genes with two 
or more tags mapped as having reproducible CAGE support. For each segmentation label, we 
defined true positives (TP) as the number of bases assigned to that label and a reproducible 
CAGE TSS, false positives (FP) as the number of bases assigned to that label but not a 
reproducible CAGE TSS, and false negatives (FN) as the number of bases assigned to some 
other label and a reproducible CAGE TSS. We defined the base-level precision as TP / (TP + 
FP), and the base-level recall as TP / (TP + FN). 

Supplementary Results 
Comparing the segmentations 
The two segmentation methods exhibit strong concordance across most of the genome. 
However, there are specific methodological differences between the segmentation approaches 
(Table 1). ChromHMM uses a 200 bp windowed approach across the genome with a binary 
classification of the signal for each of the input data sets in each window. Segway utilizes the 
continuous range of the normalized signal for each data set considering each genomic base as 
input to the machine learning. These differences in approach have performance implications for 
each method (it is faster to run ChromHMM than Segway) but more importantly result in 
differences in the qualitative characteristics of the segments generated. By design, the minimum 
segment size for each ChromHMM state is 200 bp, and segments are generated in multiples of 
this unit length, while Segway expects a segment size of 100 bp but can produce both smaller 
and larger segments over a single base incremental range. The effect of these differences is 
that ChromHMM produces on the average larger segments than Segway (median GM12878 



segment length: 600 bp ChromHMM, 157 bp Segway; Supplementary Figures 8 and 9). 
ChromHMM has fewer state changes per kilobasepair (for GM12878, 0.37 transitions per kbp) 
than Segway (4.8 transitions per kbp) producing more continuity across the genome. This 
phenomenon is particularly noticeable for instance in transcribed genes where Segway 
generates frequent flipping behavior between multiple related transcribed gene states. On the 
other hand, the greater freedom that Segway has to place segment transitions provides higher 
resolution that potentially has advantages for defining the boundaries of states. Manual 
inspection of the smaller states such as those at putative enhancers or TSSs suggested that 
this property of Segway facilitated a more precise representation of the underlying signal 
shapes in these cases. We surveyed a small number of users within the ENCODE project on 
the utility of the two segmentations in their own regions of interest, and received feedback that 
reinforced our own analyses and manual inspection. In short, they liked the continuity provided 
by ChromHMM over larger genomic regions such as genes, but valued the resolution provided 
by Segway at specific elements of interest including TSSs and enhancers. 

We extended these comparisons by conducting a series of analyses side by side of the two 
segmentations. We analyzed each of the segmentations for overlap with selected other data 
from the ENCODE project that had specific interpretations in terms of genome annotation, 
including gene features such as TSSs and transcription termination sites, transcription factor 
(TF) binding regions from ChIP-seq data, as well as more dispersed signals such as RNA-seq 
data and methylation levels from reduced representation bisulfite sequencing. Supplementary 
Figure 19 shows ROC curves for representative TFs. For most TFs the performance of the two 
segmentations is very similar as measured by the area under the ROC curve with a handful of 
factors showing marginally superior overall detection of their binding regions by each 
segmentation (for example, NFE2, RAD21, and ELF1 for ChromHMM; REST, Z3, and SPI1 for 
Segway). Analysis of the distance to the nearest TSS for each segmentations (Supplementary 
Figure 14) shows that Segway contains states with better resolution in locating the precise TSS 
with a median distance from the center of a TSS segment to the nearest TSS of 189 bp for state 
Tss (GM12878), compared to 652 bp for ChromHMM state Tss. Analysis of the overlap with 
RNA-seq features (Supplementary Figure 20) and methylation levels (not shown) across the 
segmentations indicates that segments with similar characteristics exist in each segmentation. 
These results re-emphasize the contrasting properties of high continuity versus high resolution 
identified in the initial comparison. Overall, the analysis identifies several contrasting features of 
the segmentations, but does not favor one over the other. We conclude that useful features can 
be identified from both approaches and therefore provide both segmentations to users. 

The HBB locus 
We expect that users of the ENCODE data will find that the combined segmentations provide an 
informative overview of potential functionality in a locus and a guide to more detailed 
examination and hypothesis development. For an intensively studied locus like the HBB 
complex, which encodes the beta-like subunits of hemoglobin, it is gratifying to find that most of 
the known regulatory regions are captured by the appropriate states. A combination of Tss, 
Prom, Enh, Ctcf and DNase states from K562 cells captures 77% (by Segway) and 87% (by 
ChromHMM) of the known cis-regulatory modules (54). 

Furthermore, the segmentations provide new insights for regulation within this locus 
(Supplementary Figure 13). It has long been known that two pairs of large deletions that remove 
the gene HBB (encoding the adult beta-globin) have similar endpoints between HBB and HBG1 
or HBG2 (encoding the fetal gamma-globins), but for each pair, one deletion has a beta-
thalassemia phenotype (very low or no beta-globin protein) while the other deletion maintains 



expression of the HBG genes in adults, hence giving "hereditary persistence of fetal 
hemoglobin" or HPFH (55,56). The latter display mild or no symptoms, but beta-thalassemia is a 
serious disease requiring constant therapy. The pairs of deletions are (a) Spanish: (delta beta)0-
Thal and HPFH-1; Black and (b) Chinese: Ggamma(Agamma delta beta)0-Thal and HPFH-6. In 
both cases, the region distal to the globin genes has been shown to have enhancer activity 
(57,58), indicated as red rectangles in Supplementary Figure 13. The proposed model is that 
the HPFH deletions bring an enhancer close to the target HBG genes and keep one or both 
expressed, whereas the thalassemia deletions remove the enhancers. 

The segmentations (on the top line of Supplementary Figure 13) confirm that the known 
enhancers, including those at the HPFH breakpoints and the distal locus control region, are in 
segmentation classes predicted to be enhancers. In addition, they provide the novel insight that 
the chromosomal segment that is deleted is largely in the quiescent state. Genes in the 
quiescent state are silent or expressed at a low rate (Figure 4). Hence, the model for gene 
regulation in these situations can be expanded to include removal of inactive (or quiescent) 
chromatin as part of the process for activation of HBG genes in HPFH. 

Another interesting point is that the HPFH1 enhancer is in the E state (orange), whereas the 
HPFH6 enhancer is in the WE (weak enhancer, yellow) state. That observation fits with the 
much stronger signal in HPFH1 enhancer for GATA1, p300 and CEBPB (shown by the TF 
binding tracks from ENCODE). Finally, the additional enhancer-related signals further away 
(toward the left in the figure) are intriguing. These could be previously unknown regulatory 
elements, and this is an important hypothesis to test experimentally.



Supplementary tables 

 GM12878 H1 hESC HeLa-S3 
H3K4me1 BroadHistoneGm12878H3k4me1StdAln_2Reps BroadHistoneH1hescH3k4me1StdAln_2Reps BroadHistoneHelas3H3k4me1Std_1Reps 
H3K4me2 BroadHistoneGm12878H3k4me2StdAln_2Reps BroadHistoneH1hescH3k4me2StdAln_2Reps BroadHistoneHelas3H3k4me2StdAln_2Reps 
H3K4me3 AllLabsHistoneGm12878H3k4me3StdAln_4Reps BroadHistoneH1hescH3k4me3StdAln_2Reps AllLabsHistoneHelas3H3k4me3StdAln_4Reps 

H3K9ac BroadHistoneGm12878H3k9acStdAln_2Reps BroadHistoneH1hescH3k9acStdAln_2Reps BroadHistoneHelas3H3k9acStdAln_2Reps 
H3K27ac BroadHistoneGm12878H3k27acStdAln_2Reps BroadHistoneH1hescH3k27acStdAln_2Reps BroadHistoneHelas3H3k27acStdAln_2Reps 

H3K27me3 AllLabsHistoneGm12878H3k27me3StdAln_4Reps BroadHistoneH1hescH3k27me3StdAln_2Reps AllLabsHistoneHelas3H3k27me3StdAln_4Reps 
H3K36me3 AllLabsHistoneGm12878H3k36me3StdAln_4Reps BroadHistoneH1hescH3k36me3StdAln_2Reps AllLabsHistoneHelas3H3k36me3StdAln_4Reps 
H4K20me1 BroadHistoneGm12878H4k20me1StdAln_2Reps BroadHistoneH1hescH4k20me1StdAln_2Reps BroadHistoneHelas3H4k20me1StdAln_2Reps 

Pol2 AllLabsGm12878Pol2Std_9Reps HaibTfbsH1hescPol2Pcr1xAln_2Reps AllLabsHelas3Pol2Std_5Reps 
CTCF AllLabsGm12878CtcfStd_9Reps AllLabsH1hescCtcfStd_5Reps AllLabsHelas3CtcfStd_6Reps 

Duke DNase  OpenChromDnaseGm12878Aln_5Reps  OpenChromDnaseH1hescAln_2Reps OpenChromDnaseHelas3Aln_3Reps 
UW DNase UwDnaseGm12878Aln_2Reps UwDnaseH1hescAln_1Reps UwDnaseHelas3Aln_2Reps 

FAIRE OpenChromFaireGm12878Aln_3Reps OpenChromFaireH1hescAln_2Reps OpenChromFaireHelas3Aln_2Reps 
Control BroadHistoneGm12878ControlStdAln_2Reps BroadHistoneH1hescControlStdAln_2Reps BroadHistoneHelas3ControlStdAln_2Reps 

    
 HepG2 HUVEC K562 

H3K4me1 BroadHistoneHepg2H3k4me1Std_1Reps BroadHistoneHuvecH3k4me1StdAln_3Reps AllLabsHistoneK562H3k4me1StdAln_4Reps 
H3K4me2 BroadHistoneHepg2H3k4me2StdAln_2Reps BroadHistoneHuvecH3k4me2StdAln_2Reps BroadHistoneK562H3k4me2StdAln_2Reps 
H3K4me3 AllLabsHistoneHepg2H3k4me3StdAln_4Reps AllLabsHistoneHuvecH3k4me3StdAln_5Reps AllLabsHistoneK562H3k4me3StdAln_6Reps 

H3K9ac BroadHistoneHepg2H3k9acStdAln_2Reps BroadHistoneHuvecH3k9acStdAln_3Reps BroadHistoneK562H3k9acStdAln_2Reps 
H3K27ac BroadHistoneHepg2H3k27acStdAln_2Reps BroadHistoneHuvecH3k27acStdAln_3Reps BroadHistoneK562H3k27acStdAln_2Reps 

H3K27me3 AllLabsHistoneHepg2H3k27me3StdAln_4Reps AllLabsHistoneHuvecH3k27me3StdAln_4Reps AllLabsHistoneK562H3k27me3StdAln_6Reps 
H3K36me3 AllLabsHistoneHepg2H3k36me3StdAln_4Reps AllLabsHistoneHuvecH3k36me3StdAln_5Reps AllLabsHistoneK562H3k36me3StdAln_4Reps 
H4K20me1 BroadHistoneHepg2H4k20me1StdAln_2Reps BroadHistoneHuvecH4k20me1StdAln_3Reps BroadHistoneK562H4k20me1StdAln_2Reps 

Pol2 AllLabsHepg2Pol2Std_4Reps AllLabsHuvecPol2Std_5Reps AllLabsK562Pol2Std_6Reps 
CTCF AllLabsHepg2CtcfStd_8Reps AllLabsHuvecCtcfStd_7Reps AllLabsK562CtcfStd_7Reps 

Duke DNase  OpenChromDnaseHepg2Aln_3Reps OpenChromDnaseHuvecAln_2Reps OpenChromDnaseK562Aln_2Reps 
UW DNase UwDnaseHepg2Aln_2Reps UwDnaseHuvecAln_2Reps UwDnaseK562Aln_2Reps 

FAIRE OpenChromFaireHepg2Aln_3Reps OpenChromFaireHuvecAln_2Reps OpenChromFaireK562Aln_2Reps 
Control BroadHistoneHepg2ControlStdAln_2Reps BroadHistoneHuvecControlStdAln_3Reps BroadHistoneK562ControlStdAln_1Reps 

Supplementary Table 1: Names of signal tracks used as input to the segmentations. Each column contains the tracks from two cell 
types. Each row contains a single assay target, coordinated amongst the cell types. All tracks are available at 
https://sites.google.com/site/anshulkundaje/projects/wiggler. Filenames are wgEncode*.norm5.rawsignal.bedgraph.gz, where * is the 
name used in this table. 
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Assay Target Production groups 

ChIP-seq histone modifications and variants 
 
corresponding control datasets 

Broad Institute of MIT and Harvard 
Stanford/Yale/Davis/Harvard 
University of Washington 

ChIP-seq transcription factor binding sites 
 
corresponding control datasets  

Broad Institute of MIT and Harvard 
HudsonAlpha Institute for Biotechnology 
Stanford/Yale/Davis/Harvard 
University of Texas at Austin 
University of Washington 

DNase-seq regions of open chromatin Duke University 
University of Washington 

FAIRE-seq regions of open chromatin University of North Carolina-Chapel Hill 
MNase-seq nucleosome positions Stanford 
 

Supplementary Table 2: Classes of ENCODE datasets we generated signal tracks for. We used a subset of these tracks, as 
described in Methods and specified in Supplementary Table 1, as input to the segmentations. 



(A) 
 
cell type mnemonic rationale 

GM12878 Tss highest TSS; high H3K4me3, H3K27ac, Pol2, DNase, FAIRE 
 TssF second-highest TSS; high H3K4me3, H3K27ac, DNase, FAIRE 
 PromF high H3K4me3, H3K27ac, DNase, FAIRE 
 Enh highest p300; high H3K4me1 
 EnhF med H3K4me1 
 EnhWf med-high K4me1, but low K27ac 
 Ctcf high CTCF 
 CtcfO highest CTCF, DNase, FAIRE 
 Gen5' high K36me3, exon 
 Elon1 high K36me3, exon 
 Elon2 high K36me3, exon 
 ElonW high K36me3, exon 
 Gen3' highest K36me3, med Pol2, TES after Tss/TssF 
 Repr1 K27me3 
 Repr2 K27me3 
 Repr3 K27me3 
 Repr4 K27me3 
 Repr5 K27me3 
 Low1 low values everywhere but control 
 Low2 low values everywhere but control 
 Low3 low values everywhere but control 
 Low4 low values everywhere but control 
 Low5 low values everywhere but control 
 Low6 low values everywhere but control 
 Quies zeroes 
H1 hESC Tss highest TSS 
 TssF near-second highest TSS 
 PromF K4me3+K27ac 
 PromP second highest TSS+K27me+K4me3+no K27ac 
 EnhPr second-highest p300+K4me1+K27ac 
 EnhWf1 K4me1 
 EnhWf2 K4me1 
 EnhWf3 K4me1 
 DnaseD Duke DNase 
 Faire FAIRE 
 CtcfO CTCF, DNase, FAIRE 
 Elon K36me3+exon 
 ElonW1 K36me3 
 ElonW2 K36me3 
 ElonW3 Pol2 
 Gen3' K36Me3+Pol2+exon 
 Repr K27me3 
 Low1 low everything except Control, FAIRE 
 Low2 low everything except Control, FAIRE 
 Low3 low everything except Control, FAIRE 
 Low4 low everything except Control, FAIRE 
 Low5 low everything except Control, FAIRE 
 Low6 low everything except Control, FAIRE 
 Low7 low everything except Control, FAIRE 
 Quies zeroes 
HeLa-S3 Tss high K4me3+K27ac+TSS 
 PromF medium TSS, high K27ac, K4me3 
 Enh1 highest p300+high K4me1+K27ac 
 Enh2 high p300 
 EnhF some p300, K4me1 
 EnhPr some p300, K4me1, K27ac 
 Faire FAIRE but nothing else 
 CtcfO CTCF, DNase, FAIRE 
 Gen5' K36me3, high exon, medium Pol2, low TSS 
 Elon K36Me3+Pol2+exon 
 ElonW1 K36me3+low pol2+exon 
 ElonW2 K36Me3+Pol2+exon 



 Gen3' K36me3+TES 
 Repr1 K27me3 
 Repr2 K27me3 
 Repr3 K27me3 
 Repr4 K27me3 
 Low1 low except Control, FAIRE 
 Low2 low except Control, FAIRE 
 Low3 low except control, H4K20 
 Low4 low except Control 
 Low5 low except Control 
 Low6 low except Control 
 Low7 low everywhere 
 Quies zeroes 
HepG2 Tss high K4me3, K27ac 
 PromF high K4me3, K27ac 
 PromP1 high TSS+K27me3 
 PromP2 high TSS+K27me3 
 Enh high p300 
 EnhF1 med p300, K4me1, K27ac 
 EnhF2 med p300, K4me1 
 EnhPr med-low p300 
 EnhW K4me1+FAIRE+p300+low K27ac 
 CtcfO CTCF, DNase, FAIRE 
 Gen5'1 K36me3+med exon 
 Gen5'2 K36me3+med exon 
 Elon K36me3 
 ElonW K36me3 
 Repr1 high K27me3 
 Repr2 high K27me3 
 Repr3 high K27me3 
 Repr4 K27me3 
 Repr5 K27me3 
 Repr6 K27me3 
 Low1 low except Control 
 Low2 low except Control 
 Low3 low except Control 
 Low4 low except Control 
 Quies zeroes 
HUVEC Tss K4me3+exon 
 PromF K4me3+exon 
 Enh K4me1 
 EnhF1 K4me1 
 EnhF2 K4me1 
 EnhW1 K4me1 
 EnhW2 K4me1+FAIRE+low K27ac 
 Faire FAIRE 
 CtcfO CTCF, DNase, FAIRE 
 Gen5' K36me3+exon 
 Elon1 K36me3+exon 
 Elon2 K36me3+exon 
 ElonW K36me3+exon (weaker) 
 Gen3' K36me3+exon 
 Repr1 K27me3 
 Repr2 K27me3 
 Repr3 K27me3 
 Repr4 K27me3 
 Repr5 K27me3 
 Repr6 K27me3 
 Repr7 K27me3 
 Low1 low except Control 
 Low2 low except H4K20 
 Low3 low except control, H4K20 
 Quies zeroes 
K562 Tss highest TSS 
 PromF second highest TSS+K4me3 
 Enh1 highest p300 



 Enh2 second highest p300 
 EnhF1 medium K4me1 
 EnhF2 high K4me1 
 EnhF3 high K4me1 
 EnhP K27me3+K4me1 
 EnhWf K4me1 
 CtcfO CTCF 
 Elon high K36me3 
 ElonW high K36me3 
 Gen3'1 highest K36me3, TES 
 Gen3'2 highest K36me3, TES 
 Repr1 K27me3 
 Repr2 K27me3 
 Repr3 K27me3 
 Repr4 K27me3 
 Low1 low except control, FAIRE 
 Low2 low except control, FAIRE 
 Low3 low except control, FAIRE 
 Low4 low except control, FAIRE 
 Low5 low except control, FAIRE 
 Low6 low except control, FAIRE 
 Quies zeroes 

 
(B)  
cell type mnemonic rationale 

all Tss Active promoter, TSS/CpG island region 
 TssF Active promoter, flanking TSS/CpG islands 
 PromF  Promoter flanking 
 PromP Inactive/Poised promoter, highly conserved 
 Enh Candidate Strong Enhancer, open chromatin  
 EnhF Candidate Strong Enhancer, flanking open chromatin  
 EnhWF Candidate poised/weak enhancer; flanking open chromatin of candidate enhancers  
 EnhW Candidate weak enhancer and open chromatin 
 DNaseU Primarily UW DNase, weaker open chromatin sites 
 DNaseD Primarily Duke DNase, candidate regulatory elements in more likely repressive locations 
 FaireW Modest Faire/Control enrichments, potential CNV  
 CtcfO Distal CTCF/Candidate Insulator with open chromatin 
 Ctcf Distal CTCF/Candidate Insulator without open chromatin 
 Gen5' Transcription transition, highly expressed genes towards 5' end 
 Elon Transcriptional Elongation, stronger H3K36me3, more exonic 
 ElonW Transcriptional Elongation, weaker H3K36me3 
 Gen3' Transcription 3' end of genes, highly expressed; more exonic 
 Pol2  Pol2 specific locations, majority in genes but substantial portion in intergenic locations  
 H4K20 Transcription, primarily H4K20me1, more intronic 
 ReprD Polycomb Repression with Duke DNase sites/promoter and conservation enrichment (except HELA) 
 Repr Strong Polycomb Repression 
 ReprW Weaker Polycomb Repression 
 Low Low signal proximal to active elements 
 Quies Heterochromatin/Dead Zone 
 Art Potential CNV or repetitive artifacts 

 
Supplementary Table 3: Rationale for mnemonics. Each entry briefly describes the primary 
reason or reasons that the given state was assigned its mnemonic label. (A) Segway, (B) 
ChromHMM.



Superstate Superstate 
description 

Gm12878 H1 hESC HeLa-S3 HepG2 HUVEC K562 

TSS Predicted promoter 
region including 
TSS 

 

Tss  
TssF  
Enh 

Tss 
TssF 

Tss Enh1 Tss 
PromP2 
Enh 

Tss 
Enh EnhF2 

Tss 
PromF 
Enh1 

E Predicted enhancer EnhF PromF EnhPr 
PromP 
PromF 

Enh2 EnhPr 
PromF 

EnhPr 
PromF 
PromP1 

EnhF1 PromF 
Repr2 

EnhF3 
Enh2 

I Distal CTCF CtcfO CtcfO CtcfO CtcfO CtcfO CtcfO 
G Transcribed Gene Gen5' Elon1 

Elon2 ElonW 
Gen3' Low4 

Elon Gen3' Gen5' Elon 
ElonW1 ElonW2 
Gen3' Low4 

Gen5'1 
Gen5'2 Elon  

Gen5' Elon1 
ElonW Gen3' 
Low2 

Gen3'1 
Gen3'2  
Elon 
ElonW 

Supplementary Table 4: Clusters of states for a subset of Segway states for each cell type, used in generating the combined 
segmentation. All other states were clustered into the R (Predicted Repressed or Low Activity region) cluster. 
 
State clusters TSS E  I G R 
States 1-2 TSS     
State 3  PF    
State 4 TSS E CTCF   
States 5-6 E E    
States 7-11  WE CTCF   
States 12-13   CTCF CTCF CTCF 
States 14-19   CTCF T T 
States 20-25   CTCF T R 

Supplementary Table 5: Combined segmentation states for combinations of ChromHMM states (y-axis) and Segway clusters of 
states (x-axis). If the cell is empty, the two segmentations are classed as contradictory and no combined state is assigned. 



Cell line Coverage (bp) Coverage (%) 

GM12878 2,729,345,527 96.5  

H1 hESC 2,671,442,653 94.4 

HeLa-S3 2,683,004,504 94.8 

HepG2 2,694,700,569 95.2 

HUVEC 2,693,810,504 95.2 

K562 2,685,096,985 94.9  

Supplementary Table 6: Coverage for the combined segmentation in each of the tier 1 and 2 
cell lines compared to Segway and ChromHMM at 100%.



 

Supplementary Table 7: ChromHMM and Segway log2 fold enrichment for ENCODE transcription factor and 
general factor binding peaks calls in matched cell types to the segmentation states for the SPP set (59). 
Enrichments are shown for the GM12878, H1 hESC, HeLa-S3, HepG2, HUVEC, and K562 cell types which 
were based on combining the peak calls for 57, 31, 42, 52, 4, and 95 experiments respectively. We excluded 
CTCF and Pol2 because they were inputs to the segmentation. 



Supplementary figures 
 

 
Supplementary Figure 1: Normalized signal from several input DNA tracks produced by different laboratories 
and production groups in the K562 chronic myeloid leukemia cell line around the BCR-ABL fusion locus, as 
shown in the UCSC Genome Browser. The tracks shown include gene models; input DNA from Broad Institute; 
Hudson-Alpha Institute of Biology; University of California, Davis; University of Washington DNase; University 
of Washington DNase ChIP; University of Texas at Austin; Stanford/Yale/Davis/Harvard group, RepeatMasker 
regions; and 35-bp mappability. The BCR-ABL locus is a known region of amplified DNA. Input DNA datasets 
typically show signal in the range of 0 to 3 fold, but in amplified regions they show signal > 20 fold. 



 

Supplementary Figure 2: Normalized signal of multiple combined-replicate CTCF datasets in the GM12878 
cell line from different laboratories (Broad Institute, University of Texas at Austin, Stanford/Yale/Davis/Harvard, 
University of Washington), as shown in the UCSC Genome Browser. The top track shows combined signal 
across all of these laboratories. All tracks show similar range of signal and very similar shape of the signal 
profile with coincidence of the peak summits. Peak signal at typical high-confidence TF peak locations is 
typically > 20. 

 

 

Supplementary Figure 3: Normalized signal for multiple combined-replicate H3k4me3 datasets from different 
laboratories and the combined signal across all labs, as shown in the UCSC Genome Browser. All tracks show 
similar range of signal and very similar shape of the signal profiles. High confidence regions of enrichment 
typically show signal > 15 fold. Note the precise dip in the H3k4me3 signal at the TSS of the genes that 
corresponds to the nucleosome free region. 
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Supplementary Figure 4 (overleaf): Enrichment of various segment labels (vertically, labeled by green panels) from Segway and 
ChromHMM segmentations over positions on an idealized gene (horizontally, labeled by cyan panels) using the GENCODE 7 
protein-coding genes. We used Segtools (50) to calculate enrichment as the base-2 logarithm of the observed frequency of a label at 
a particular position along a gene divided by the expected frequency of the label from its prevalence in the genome overall. Enriched 
positions are shown in red, and depleted positions are shown in blue. The labels for idealized gene components at the top include 
the mean length of that component in parentheses. Segway: (A) GM12878, (B) H1 hESC, (C) HeLa-S3, (D) HepG2, (E) HUVEC, (F) 
K562. ChromHMM: (G) GM12878, (H) H1 hESC, (I) HeLa-S3, (J) HepG2, (K) HUVEC, (L) K562.



 

Supplementary Figure 5: Heat map of signal distribution from the Segway HeLa-S3 segmentation. The figure 
shows a matrix in which rows correspond to data tracks, columns correspond to Segway segment labels, and 
each value in the matrix is the mean data value for the given track in the given label, with values corresponding 
to the color bar. Rows are normalized so that the minimum and maximum values are 1 and 0, respectively. 
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Supplementary Figure 6: Emission parameters for each segment label and signal track combination learned 
by Segway in various cell types. Each row corresponds to one of the input data tracks, and each column 
corresponds to a Segway label. Each value in the matrix corresponds to the mean of the Gaussian at the 
specified state. (A) GM12878, (B) H1 hESC, (C) HepG2, (D) HUVEC, (E) K562. 
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Supplementary Figure 7: Heat maps of the theoretical transition probability matrix. for the Segway (A) 
GM12878, (B) H1 hESC, (C) HeLa-S3, (D) HepG2, (E) HUVEC, (F) K562 models, and for the (G) ChromHMM 
model. Each row represents a particular start label. The cells within each row represent the probability that the 
model will transition to an end label given that start label, with values represented by the colors in the color bar. 
Diagonal cells have been zeroed to visualize non-self transitions only. Other cells that appear dark green 
usually represent a low nonzero value. 
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Supplementary Figure 8: Fraction of segmentation covered by each label, measured in number of bases 
(red) and number of segments (blue) for the Segway segmentations of: (A) GM12878, (B) H1 hESC, (C) HeLa-
S3, (D) HepG2, (E) HUVEC, and (F) K562, and the ChromHMM segmentations of: (G) GM12878, (H) H1 
hESC, (I) HeLa-S3, (J) HepG2, (K) HUVEC, and (L) K562.
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Supplementary Figure 9: Violin plots (60) showing the distribution of segment lengths on a logarithmic scale 
for each label, for (A) Segway and (B) ChromHMM GM12878 segmentations. Plots generated with Segtools 
(50). Black dots indicate the median segment length, dark green lines extend from the first to third quartiles, 
and dark green circles indicate outliers. The filled light green curve is a kernel density plot of each distribution. 



 

Supplementary Figure 10: Heat map of the pairwise segment overlap and combined segmentation classes 
for the ChromHMM and Segway GM12878 segmentations. The state mnemonics are listed along the axes, 
colored by their merged classes. For each pairwise combination of states, the lower-left triangle represents the 
proportion of segments of the ChromHMM state that overlap a segment of the Segway state by at least 20 
base pairs, colored from blue (low) to red (high), and vice versa for the upper-right triangle. The colored boxes 
indicate the rules for deciding concordant bases in the combined segmentation: TSS (red), PF (light red), E 
(orange), WE (yellow), CTCF (blue), T (green) and R (gray). 



 

Supplementary Figure 11: State variability between cell types for the combined seven-state segmentation. 
The figure shows the distribution of occurrence of the state label at specific genome locations across each of 
the cell types from state labels that are unique to one cell type at one genome location (labeled “1”) to 
ubiquitous state labels that occur at the same location across all six cell lines for each of the five states (CTCF, 
E, T, TSS, and R; labeled “6”). For each state label, segments from each of the six cell lines were overlapped 
and clustered to give a bit string of state labels at each genomic region. Bit strings were then assessed by cell 
type. Data was then combined to give the mean occurrence of each cell count for each segment label. 
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Supplementary Figure 12: Heat map of empirical transition frequencies for the combined (A) GM12878, (B) 
H1 hESC, (C) HeLa-S3, (D) HepG2, (E) HUVEC, (F) K562 segmentations. Each row represents a particular 
start label. The cells within each row represent the frequency with which segments will transition to an end 
label given that start label, with values represented by the colors in the color bar. 



 

Supplementary Figure 13: Segmentations for functional interpretation in the HBB locus. The combined 
segmentation (top line) confirms the previous identification of distal regulatory regions to the left of the HBB 
genes in the diagram, and leads to the prediction of additional, more distal ones separated by regions of 
repressed chromatin. The long, blue horizontal rectangles show the extent of large deletions leading to 
phenotypes of beta-thalassemia (Thal) or hereditary persistence of fetal hemoglobin (HFPH; tracks are from 
the PhenCode compilation http://phencode.bx.psu.edu/ and Giardine et al. 2007). Red rectangles show the 
location of known cis-regulatory modules in the HBB locus (King et al. 2005). Genes are shown in the middle of 
the diagram, and below them are ChIP-seq signal tracks for occupancy by the transcription factors GATA1, 
NFE2, and CBPB along with the coactivator p300. Known and predicted enhancers to the left of HBB are 
outlined by vertical green rectangles, and the postulate that they target the HBG1 and HBG2 genes (outlined 
by blue vertical rectangles) is indicated by the arrows at the bottom. 

 

Supplementary Figure 14: Box plots of distance to the nearest TSS for selected relevant labels for 
ChromHMM (cyan), Segway (pink), and the combined segmentation (purple) for GM12878 and K562 cells. 
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Supplementary Figure 15: Promoter and flanking regions of the SOD1 gene, displayed in the UCSC Genome 
Browser. The ChromHMM and Segway segmentations are shown, followed by GENCODE gene annotations, 
and signal tracks for DNaseI hypersensitivity, H3K4me3, H3K4me3, H3K9ac, and H3K27ac. The high-
resolution Segway segmentation identifies a 171-bp Enh segment at a nucleosome-free open chromatin 
region, surrounded on either side by Tss and Tss flanking segments corresponding to modified well-positioned 
nucleosomes at the TSS. The high-continuity ChromHMM segmentation assigns this whole region to a 1400-
bp Tss segment. 



 

Supplementary Figure 16: This figure shows the fold enrichment of states relative to the 3’ ends of 
GENCODE protein coding genes for (a) ChromHMM State 17 (Gen3’) (b) ChromHMM State 18 (Pol2) (c) 
Segway states given the label or label prefix Gen3’. Distance relative to the 3’ prime end is in base pairs.



 

Supplementary Figure 17: ChromHMM and Segway state enrichments in each cell type for regions proximal 
to gene starts. These regions are those bases in the genome within 2000 bp of the 5' end of a GENCODE 
gene. Enrichment is defined as log2 of the ratio of the fraction of the state in the cell type that overlaps a gene 
start proximal region divided by the fraction of chromosomes 1-22 and X that overlap a gene start proximal 
region, which was 2.48%. 



 

Supplementary Figure 18: Enrichment of promoter-associated, enhancer-associated, and quiescent labels in 
the 500 bp upstream and downstream of the center of ENCODE ChIP-seq peaks for transcriptional coactivator 
p300 in HepG2, for both (A) Segway and (B) ChromHMM. Each panel shows the mean log2 fold enrichment for 
a position relative to all p300 peaks against the position’s location relative to the peak center. The largest p300 
enrichment is in the Enh labels, and there is also substantial enrichment in the promoter-associated labels. The 
p300 peaks are highly depleted for the Quies labels. 



 

Supplementary Figure 19: The two plots at the top are receiver operating characteristic (ROC) curves for 
Segway (left) and ChromHMM (right) for the SPP peak calls for the ChIP-seq data for CTCF (UW) on 
Gm12878 cells. The first three most specific state labels are labeled by their mnemonic. The bottom plot is the 
difference in area under the curve (AUC, Segway AUC minus ChromHMM AUC) for the 25 state 
segmentations for all Gm12878 TF ChIP-seq SPP peak datasets. The TF data is labeled by the factor detected 
(using the HGNC name of the gene that encodes the factor) and laboratory that generated the data. 



(A)  

(B)  

Supplementary Figure 20: State-by-state percentage of protein coding genes supported by RNA-seq 
expression. Bars show, for (A) Segway or (B) ChromHMM, the percentage of protein-coding genes that also 
overlap a same-cell-line protein-coding RNA-seq contig for GM12878. 



 

Supplementary Figure 21: Fold enrichment for nuclear lamina associated domains (Guelen et al. 2008) for all 
states and cell types for both ChromHMM and Segway. 









 

Supplementary Figure 22: Portion of states covered and enrichment or depletion of (A, B) RepeatMasker 
repeats or (C, D) mappable regions in each label for two 25-label segmentations on GM12878 data. Panels (A, 
C) show Segway data, and (B,D) show ChromHMM data. In each panel, the left plot shows the percentage of 
bases in each state occupied by the corresponding feature (repeat or mappable region). The right plot shows 
enrichment (positive) or depletion (negative) of the feature, measured as log2 (o/e), where o is the number of 
bases observed and e is the number expected (see Supplementary Methods). 



 

Supplementary Figure 23: ChromHMM and Segway state enrichments in each cell type for constrained 
elements as defined by the SiPhy-π measure (61,62). Enrichment is defined as log2 of the ratio of the fraction 
of the state in the cell type that overlaps a constrained element divided by the fraction of chromosomes 1-22 
and X that overlap a constrained element, which was 5.82%. The SiPhy-π elements were originally defined 
based on the NCBI36/hg18 assembly, but for this analysis we used a version lifted over to GRCh37/hg19. 
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