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This document contains some chapters of our wiki on deepTools usage for NGS data analysis. For the most updated version
of our help site and for more information about deepTools, a brief introduction into Galaxy as well as step-by-step
protocols, please visit: https://github.com/fidelram/deepTools/wiki

Why we built deepTools
The main reason why deepTools was started is the simple fact that in 2011 we could not find tools that met all our needs for
NGS data analysis. While there were individual tools for separate tasks, we wanted software that would fulfill all of the following
criteria:

efficiently extract reads from BAM files and perform various computations on them
turn BAM files of aligned reads into bigWig files using different normalization strategies
make use of multiple processors (speed!)
generation of highly customizable images (change colors, size, labels, file format etc.)
enable customized down-stream analyses which requires that every data set that is being produced can be stored by
the user
modular approach - compatibility, flexibility, scalability (i.e. we can add more and more modules making use of
established methods)

The flow chart below depicts the different tool modules that are currently available within deepTools (deepTools modules are
written in bold red and black font). If you are not familiar with the file names shown here, please see our Glossary at the end of
the document for more information.

https://github.com/fidelram/deepTools/wiki
https://raw.github.com/fidelram/deepTools/master/examples/flowChart_BAMtoBIGWIG_small.png


How we use deepTools
You will find many examples from ChIP-seq analyses in this tutorial, but this does not mean that deepTools is restricted to
ChIP-seq data analysis. However, some tools, such as bamFingerprint specifically address ChIP-seq-issues. (That being said,
we do process quite a bit of RNA-seq, other -seq and genomic sequencing data using deepTools, too, but many normalization
issues arose during handling of ChIP-seq data).

As shown in the flow chart above, our work usually begins with one or more FASTQ file(s) of deeply-sequenced samples. After
a first quality control using FASTQC, we align the reads to the reference genome, e.g. using bowtie2][].
We then use deepTools to assess the quality of the aligned reads:

1. Correlation between BAM files (bamCorrelate). This is a very basic test to see whether the sequenced and aligned
reads meet your expectations. We use this check to assess the reproducibility - either between replicates and/or between
different experiments that might have used the same antibody/the same cell type etc. For instance, replicates should
correlate better than differently treated samples.

2. GC bias check (computeGCbias). Many sequencing protocols require several rounds of PCR-based amplification of the
DNA to be sequenced. Unfortunately, most DNA polymerases used for PCR introduce significant GC biases as they
prefer to amplify GC-rich templates. Depending on the sample (preparation), the GC bias can vary significantly and we
routinely check its extent. In case we need to compare files with different GC biases, we use the correctGCbias module to
match the GC bias. See the paper by Benjamini and Speed for many insights into this problem.

3. Assessing the ChIP strength. We do this quality control do to get a feeling for the signal-to-noise ratio in samples from
ChIP-seq experiments. It is based on the insights published by Diaz et al..

Once we are satisfied by the basic quality checks, we normally convert the large BAM files into a leaner data format,
typically bigWig. bigWig files have several advantages over BAM files that mainly stem from their significantly decreased
size:

useful for data sharing & storage
intuitive visualization in Genome Browsers (e.g. IGV)
more efficient downstream analyses are possible

The deepTools modules bamCompare and bamCoverage do not only allow the simple conversion from BAM to bigWig (or
bedGraph for that matter), the main reason why we developed those tools was that we wanted to be able to
normalize the read coverages so that we could compare different samples despite differences in sequencing depth, GC
biases and so on.

Finally, once all the files have passed our visual inspections, the fun of downstream analyses with heatmapper and profiler
can begin!

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://nar.oxfordjournals.org/content/40/10/e72
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml
http://www.broadinstitute.org/igv/


deepTools overview
deepTools consists of a set of modules that can be used independently to work with mapped reads. We have subdivided such
tasks into quality controls (QC), normalizations and visualizations.

Here's a concise summary of the tools. In the following pages, you can find more details about the individual tools. We have
included many screenshots of our Galaxy deepTools web server to explain the usage of our tools. In addition, we show the
commands for the stand-alone usage, as they often indicate the options that one should pay attention to more succinctly.

tool type input files
main output

file(s)
application

bamCorrelate QC 2 or more BAM
clustered
heatmap

Pearson or Spearman correlation
between read distributions

bamFingerprint QC 2 BAM 1 diagnostic plot
assess enrichment strength of a ChIP
sample

computeGCbias QC 1 BAM
2 diagnostic
plots

calculate the expected and observed
GC distribution of reads

correctGCbias QC
1 BAM, output
from
computeGCbias

1 GC-corrected
BAM

obtain a BAM file with reads
distributed according to the genome's
GC content

bamCoverage normalization BAM
bedGraph or
bigWig

obtain the normalized read coverage
of a single BAM file

bamCompare normalization 2 BAM
bedGraph or
bigWig

normalize 2 BAM files to each other
using a mathematical operation of
your choice (e.g. log2ratio,
difference)

computeMatrix visualization
1 bigWig, 1
BED

gzipped table, to
be used with
heatmapper or
profiler

compute the values needed for
heatmaps and summary plots

heatmapper visualization
computeMatrix
output

heatmap of read
coverages

visualize the read coverages for
genomic regions

profiler visualization
computeMatrix
output

summary plot
visualize the average read coverages
over a group of genomic regions



QC of aligned reads
These tools work on BAM files that contain read-related information (e.g. read DNA sequence, sequencing quality, mapping
quality etc.). They are typically generated by read alignment programs such as bowtie2.

The following tools will allow you to inspect your BAM files more closely.

bamCorrelate
This tool is useful to assess the overall similarity of different BAM files. A typical application is to check the correlation between
replicates or published data sets, but really, you can apply it to any inquiry that boils down to the question: "How (dis)similar
are these BAM files?".

What it does

bamCorrelate computes the overall similarity between two or more BAM files based on read coverage (number of reads)
within genomic regions, i.e. for each pair of BAM files reads overlapping with the same genomic intervals are counted and the
counts are correlated. The result is a table of correlation coefficients that will be visualized as a heatmap. The correlation
coefficient indicates how "strong" the relationship between the two samples is and it will consist of numbers between -1 and 1.
(-1 indicates perfect anticorrelation, 1 perfect correlation.)

We offer two different functions for the correlation computation: Pearson or Spearman. In short, Pearson is an appropriate
measure for data that follows a normal distribution, while Spearman does not make this assumption and is generally less
driven by outliers, but with the caveat of also being less sensitive.

NOTE: bamCorrelate usually takes a long time to finish, thus it is advisable to first run the tool for a tiny region (using the --
region option) to adjust plotting parameters like colors and labels before running the
whole computation.

Important parameters

bamCorrelate can be run in 2 modes: bins and bed.

In the bins mode, the correlation is based on read coverage over consecutive bins of equal size (10k bp by default). This
mode is useful to assess the overall similarity of BAM files. The bin size and the distance between bins can be adjusted.

Note that by default, a filtering of extremes is done, when bins mode is selected.

In the BED-file option, the user supplies a list of genomic regions in BED format in addition to the BAM files. bamCorrelate
subsequently uses this list to compare the read coverages for these regions only. This can be used, for example, to compare
the ChIP-seq coverages of two different samples for a set of peak regions.

In addition to specifying the regions for which the read numbers should be compared (random regions in the bins mode,
selected regions in the BED-file mode), you can also specify what kind of correlation measure you would like to compute:
Pearson or Spearman. In short, Pearson is an appropriate measure for data that follows a normal distribution while Spearman
does not make this assumption and is generally less driven by outliers. As genome-wide sequencing data very rarely follows a
normal distribution and we often encounter few regions that capture extremely high read counts (= outlier), we tend to prefer
the Spearman correlation coefficient.

Output files:

diagnostic plot the plot produced by bamCorrelate is a clustered heatmap displaying the values for each pair-wise
correlation, see below for an example
data matrix (optional) in case you want to plot the correlation values using a different program, e.g. R, this matrix can be
used

Example Figures

Here is a result of running bamCorrelate: heatmaps where the pairwise correlation coefficients are depicted by varying color
intensities and are clustered using hierarchical clustering.

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
https://github.com/fidelram/deepTools/wiki/Glossary#terminology
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bam


For the two example plots below, we supplied BAM files of RNA-seq data from different human cell lines that we had
downloaded from the ENCODE project and a list of genes from RefSeq (Note that you can supply any number of BAM files
that you would like to compare. In Galaxy, you just click "Add BAM file", in the command line you simply list all files one after
the other, giving meaningful names via the --label option). We then calculated the pair-wise correlations of read numbers for
the different genes, once with Spearman correlation, once with Pearson correlation.

You can find the original file at http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/ (just add the file names you see in
the command at the end).

As you can see, both correlation calculations more or less agree which samples are nearly identical (the replicates, indicated
by 1 or 2 at the end of the label). The Spearman correlation, however, seems to be more robust and meets our expectations
more closely as the two different cell types (HUVEC and IMR90) are clearly separated.

This is the command that was used to generate the plot on the left-hand side:

$ deepTools-1.5.7/bin/bamCorrelate BED-file \
--BED RefSeq_Genes.bed \
--bamfiles wgEncodeCshlLongRnaSeqImr90CellPapAlnRep1.bam \
  wgEncodeCshlLongRnaSeqImr90CellPapAlnRep2.bam  \
  wgEncodeCshlLongRnaSeqImr90CellTotalAlnRep1.bam   \
  wgEncodeCshlLongRnaSeqImr90CellTotalAlnRep2.bam \
  wgEncodeCshlLongRnaSeqHuvecCellPapAlnRep1.bam \
  wgEncodeCshlLongRnaSeqHuvecCellPapAlnRep2.bam \
  wgEncodeCshlLongRnaSeqHuvecCytosolPapAlnRep3.bam \
  wgEncodeCshlLongRnaSeqHuvecCytosolPapAlnRep4.bam \
--labels IMR90_WC1 IMR90_WC2 IMR90_WC_totalRNA1 \
IMR90_WC_totalRNA2 HUVEC_WC1 HUVEC_WC2 HUVEC_Cytosol1 HUVEC_Cytosol2 \
--binSize 1000 --corMethod spearman -f 200 \
--colorMap Reds --zMin 0.5 --zMax 1 -o correlation_spearman.pdf

Here is another example of ChIP samples for two different histone marks (the histone marks are abbreviated H3K27me3 and
H3K27ac and have been shown to mark inactive and active chromatin, respectively. For our example, H3K27ac was ChIPed
by the same experimentator for different cell populations while H3K27me3 was performed with the same antibody, but at
different times. You can see that the correlation between the H3K27ac replicates is much higher than for the H3K27me3
samples, however, for both histone marks, the ChIP-seq experiments are more similar to each other than to the other ChIP or
to the input. In fact, the signals of H3K27ac and H3K27me3 are almost not correlated at all which supports the notion that their

https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bam
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
https://raw.github.com/fidelram/deepTools/master/examples/QC_bamCorrelate_RNAseq.png


biological function is also quite opposing.

computeGCbias
This tool computes the GC bias using the method proposed by Benjamini and Speed.

What it does

The basic assumption of the GC bias diagnosis is that an ideal sample should show a uniform distribution of sequenced reads
across the genome, i.e. all regions of the genome should have similar numbers of reads, regardless of their base-pair
composition. In reality, the DNA polymerases used for PCR-based amplifications during the library preparation of the
sequencing protocols prefer GC-rich regions. This will influence the outcome of the sequencing as there will be more reads for
GC-rich regions just because of the DNA polymerase's preference.

computeGCbias will first calculate the expected GC profile by counting the number of DNA fragments of a fixed size per
GC fraction (GC fraction is defined as the number of G's or C's in a genome region of a given length)(a). This profile is then
compared to the observed GC profile by counting the number of sequenced reads per GC fraction.

(a) The expected GC profile depends on the reference genome as different organisms have very different GC contents. For
example, one would expect more fragments with GC fractions between 30% to 60% in mouse samples (GC content of the
mouse genome: 45 %) than for genome fragments from Plasmodium falciparum (genome GC content P. falciparum: 20%).

Excluding regions from the read distribution calculation

In some cases, it will make sense to exclude certain regions from the calculation of the read distributions to increase the
accuracy of the computation. There are several kinds of regions that are either not expected to show a background read
distribution or where the uncertainty of the reference genome might be too big. Please consider the following points:

repetitive regions: if multi-reads (reads that map to more than one genomic position) were excluded from the BAM file,
it will help to exclude known repetitive regions. You can get BED files of known repetitive regions from UCSC Table
Browser (see the screenshot below for an example of human repetitive elements).

https://raw.github.com/fidelram/deepTools/master/examples/QC_bamCorrelate_RoadmapData.png
http://nar.oxfordjournals.org/content/40/10/e72
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bam
http://genome.ucsc.edu/cgi-bin/hgTables?command=start


regions of low mappability: these are regions where the mapping of the reads notoriously fails and we recommend to
exclude known regions with mappability issues from the GC computation. You can download the mappability tracks for
different read lengths from UCSC, e.g. for mouse and human. In the github deepTools folder "scripts", you can find a
shell script called mappabilityBigWig_to_unmappableBed.sh which will turn the bigWig mappability file from UCSC into a
BED file.

ChIP-seq peaks: in ChIP-seq samples it is expected that certain regions should show more reads than expected based
on the background distribution, therefore it makes absolute sense to exclude those regions from the GC bias calculation.
We recommend to run a simple, non-conservative peak calling on the uncorrected BAM file first to obtain a BED file of
peak regions that should then subsequently be supplied to computeGCbias.

Output files

Diagnostic plot
box plot of absolute read numbers per genomic GC fraction
x-y plot of observed/expected read ratios per genomic GC fraction (ideally, ratio should always be 1 (log2(1) = 0))

Data matrix
tabular matrix file
to be used for GC correction with correctGCbias

What the plots tell you

In an ideal sample without GC bias, the ratio of observed/expected values should be close to 1 for all GC content bins.

However, due to PCR (over)amplifications, the majority of ChIP samples usually shows a significant bias towards reads with
high GC content (>50%) and a depletion of reads from GC-poor regions.

Example figures

Let's start with an ideal case. The following plots were generated with computeGCbias using simulated reads from the
Drosophila genome.

https://raw.github.com/fidelram/deepTools/master/examples/QC_GCregionexclusion_UCSCscreenshot.png
http://hgdownload.cse.ucsc.edu/gbdb/mm9/bbi/
http://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bigwig
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bam


Drosophila genome.

As you can see, both plots based on simulated reads do not show enrichments or depletions for specific GC content bins,
there is an almost flat line at log2ratio of 0 (= ratio of 1). The fluctuations on the ends of the x axis are due to the fact that only
very, very few regions in the genome have such extreme GC fractions so that the number of fragments that are picked up in
the random sampling can vary.

Now, let's have a look at real-life data from genomic DNA sequencing. Panels A and B can be clearly distinguished and the
major change that took place between the experiments underlying the plots was that the samples in panel A were prepared
with too many PCR cycles and a standard polymerase whereas the samples of panel B were subjected to very few rounds of
amplification using a high fidelity DNA polymerase.

https://raw.github.com/fidelram/deepTools/master/examples/GC_bias_simulated_reads_2L.png_small


bamFingerprint
This quality control will most likely be of interest for you if you are dealing with ChIP-seq samples as a pressing question in
ChIP-seq experiments is "Did my ChIP work?", i.e. did the antibody-treatment enrich sufficiently so that the ChIP signal can be
separated from the background signal? (After all, around 90 % of all DNA fragments in a ChIP experiment will represent the
genomic background). We use bamFingerprint routinely to monitor the outcome of ChIP-seq experiments.

What it does

This tool is based on a method developed by Diaz et al. and it determines how well the signal in the ChIP-seq sample can be
differentiated from the background distribution of reads in the control sample. For factors that will enrich well-defined, rather
narrow regions (e.g. transcription factors such as p300), the resulting plot can be used to assess the strength of a ChIP, but
the broader the enrichments are to be expected, the less clear the plot will be. Vice versa, if you do not know what kind of
signal to expect, the bamFingerprint plot will give you a straight-forward indication of how careful you will have to be during
your downstream analyses to separate biological noise from meaningful signal.

The tool first samples indexed BAM files and counts all reads overlapping a window (bin) of specified length. These counts are
then sorted according to their rank and the cumulative sum of read counts is plotted.

Output files:

Diagnostic plot
Data matrix of raw counts (optional)

What the plots tell you

An ideal input with perfect uniform distribution of reads along the genome (i.e. without enrichments in open chromatin etc.)
should generate a straight diagonal line. A very specific and strong ChIP enrichment will be indicated by a prominent and
steep rise of the cumulative sum towards the highest rank. This means that a big chunk
of reads from the ChIP sample is located in few bins which corresponds to high, narrow enrichments seen for transcription
factors.

https://raw.github.com/fidelram/deepTools/master/examples/QC_GCplots_input.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml


Example figures

Here you see 3 different fingerprint plots.
We chose these examples to show you how the nature of the ChIP signal (narrow and high vs. wide and not extremely high) is
reflected in the "fingerprint" plots. Please note that these plots go by the name of "fingerprints" in our facility because we feel
that they help us tremendously in judging individual files, but the idea underlying these plots came from Diaz et al.

http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml
https://raw.github.com/fidelram/deepTools/master/examples/QC_fingerprint.png


Normalization of BAM files
deepTools contains 3 tools for the normalization of BAM files:

1. correctGCbias: if you would like to normalize your read distributions to fit the expected GC values, you can use the
output from computeGCbias and produce a GC-corrected BAM-file.

2. bamCoverage: this tool converts a single BAM file into a bigWig file, enabling you to normalize for sequencing depth.
3. bamCompare: like bamCoverage, this tool produces a normalized bigWig file, but it takes 2 BAM files, normalizes them

for sequencing depth and subsequently performs a mathematical operation of your choice, i.e. it can output the ratio of
the read coverages in both files or the like.

correctGCbias

What it does

This tool requires the output from computeGCBias to correct a given BAM file according to the method proposed by
Benjamini and Speed.

correctGCbias will remove reads from regions with too high coverage compared to the expected values (typically GC-rich
regions) and will add reads to regions where too few reads are seen (typically AT-rich regions).

The resulting BAM file can be used in any downstream analyses, but be aware that you should not filter out duplicates
from here on (duplicate removal would eliminate those reads that were added to reach the expected number of reads for
GC-depleted regions).

output

GC-normalized BAM file

bamCoverage

What it does

Given a BAM file, this tool generates a bigWig or bedGraph file of fragment or read coverages. The way the method works is
by first calculating all the number of reads (either extended to match the fragment length or not) that overlap each bin in the

https://raw.github.com/fidelram/deepTools/master/examples/norm_IGVsnapshot_indFiles.png
http://nar.oxfordjournals.org/content/40/10/e72


genome. Bins with zero counts are skipped, i.e. not added to the output file. The resulting read counts can be normalized
using either a given scaling factor, the RPKM formula or to get a 1x depth of coverage (RPGC).

RPKM:
reads per kilobase per million reads
The formula is: RPKM (per bin) = number of reads per bin / ( number of mapped reads (in millions) * bin length (kp) )

RPGC:
reads per genomic content
used to normalize reads to 1x depth of coverage
sequencing depth is defined as: (total number of mapped reads * fragment length) / effective genome size

output

coverage file either in bigWig or bedGraph format

Usage

Here's an exemplary command to generate a single bigWig file out of a single BAM file via the command line:

$/deepTools-1.5/bin/bamCoverage --bam corrected_counts.bam \
--binSize 10 --normalizeTo1x 2150570000 --fragmentLength 200 \
-o Coverage.GCcorrected.SeqDepthNorm.bw --ignoreForNormalization chrX

The bin size (-bs) can be chosen completely to your liking. The smaller it is, the bigger your file will be.
This was a mouse sample, therefore the effective genome size for mouse had to be indicated once it was decided that
the file should be normalize to 1x coverage.
Chromosome X was excluded from sampling the regions for normalization as the sample was from a male mouse that
therefore contained pairs of autosome, but only a single X chromosome.
The fragment length of 200 bp is only the fall-back option of bamCoverage as the sample provided here was done with
paired-end sequencing. Only in case of singletons will bamCoverage resort to the user-specified fragment length.
--ignoreDuplicates - important! in case where you normalized for GC bias using correctGCbias, you should absolutely
NOT set this parameter

Using deepTools Galaxy, this is what you would have done (pay attention to the hints on the command line as well!):



bamCompare

What it does

This tool compares two BAM files based on the number of mapped reads. To compare the BAM files, the genome is
partitioned into bins of equal size, the reads are counted for each bin and each BAM file and finally, a summarizing value is
reported.This value can be the ratio of the number of reads per bin, the log2 of the ratio or the difference. This tool can
normalize the number of reads on each BAM file using the SES method proposed by Diaz et al. Normalization based on read
counts is also available. If paired-end reads are present, the fragment length reported in the BAM file is used by default.

output file

same as for bamCoverage, except that you now obtain 1 coverage file that is based on 2 BAM files.

Usage

Here's an example command that generated the log2(ChIP/Input) values via the command line.

$ /deepTools-1.5/bin/bamCompare --bamfile1 ChIP.bam -bamfile2 Input.bam \
--binSize 25 --fragmentLength 200 --missingDataAsZero no \
--ratio log2 --scaleFactorsMethod SES -o log2ratio_ChIP_vs_Input.bw

The Galaxy equivalent:

https://raw.github.com/fidelram/deepTools/master/examples/norm_bamCoverage.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml


Note that the option "missing Data As Zero" can be found within the "advanced options" (default: no).

like for bamCoverage, the bin size is completely up to the user
the fragment size (-f) will only be taken into consideration for reads without mates
the SES method (see below) was used for normalization as the ChIP sample was done for a histone mark with highly
localized enrichments (similar to the left-most plot of the bamFingerprint-examples)

Some (more) parameters to pay special attention to

--scaleFactorsMethod (in Galaxy: "Method to use for scaling the largest sample to the smallest")

Here, you can choose how you would like to normalize to account for variation in sequencing depths. We provide:

the simple normalization total read count
the more sophisticated signal extraction (SES) method proposed by Diaz et al. for the normalization of ChIP-seq samples.
We recommend to use SES only for those cases where the distinction between input and ChIP is very clear
in the bamFingerprint plots. This is usually the case for transcription factors and sharply defined histone marks such
as H3K4me3.

--ratio (in Galaxy: "How to compare the two files")

Here, you get to choose how you want the two input files to be compared, e.g. by taking the ratio or by subtracting the second
BAM file from the first BAM file etc. In case you do want to subtract one sample from the other, you will have to choose
whether you want to normalize to 1x coverage (--normalizeTo1x) or to reads per kilobase (--normalizeUsingRPKM; similar to
RNA-seq normalization schemes).

https://raw.github.com/fidelram/deepTools/master/examples/norm_bamCompare_Gal.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml


Visualization
The modules for visualizing scores contained in bigWig files are separated into 1 tool that calculates the values
(computeMatrix) and 2 tools that contain many, many options to fine-tune the plots (heatmapper and profiler). In other words:
computeMatrix generates the values that are the basis for heatmapper and profiler.

computeMatrix
This tool summarizes and prepares an intermediary file containing scores associated with genomic regions that can be used
afterwards to plot a heatmap or a profile.

Genomic regions can really be anything - genes, parts of genes, ChIP-seq peaks, favorite genome regions... as long as you
provide a proper file in BED or INTERVAL format. This tool can also be used to filter and sort regions according to their score.

As indicated in the plot above, computeMatrix can be run with either one of the two modes: scaled regions or reference
point.

Please see the example figures down below for explanations of parameters and options.

Output files

obligatory: zipped matrix of values to be used with heatmapper and/or profiler
optional (can also be generated with heatmapper or profiler in case you forgot to produce them in the beginning):

BED-file of the regions sorted according to the calculated values
list of average values per genomic bin
matrix of values per genomic bin per genomic interval

heatmapper
The heatmapper depicts values extracted from the bigWig file for each genomic region individually.
It requires the output from computeMatrix and most of its options are related to tweaking the visualization only. The values
calculated by computeMatrix are not changed.

https://raw.github.com/fidelram/deepTools/master/examples/flowChart_computeMatrixetc.png


Definitely check the example at the bottom of the page to get a feeling for how many things you can tune.

profiler
This tool plots the average enrichments over all genomic regions supplied to computeMarix. It is a very useful complement to
the heatmapper, especially in cases when you want to compare the scores for many different groups. Like heatmapper,
profiler does not change the values that were compute by computeMatrix, but you can choose between many different ways to
color and display the plots.

Example figures
Here you see a typical, not too pretty example of a heatmap. We will use this example to explain several features of
computeMatrix and heatmapper, so do take a closer look.

1st example: Heatmap with all genes scaled to the one size and user-specified groups of
genes

As you can see, all genes have been scaled to the same size and the (mean) values per bin size (10 bp) are colored
accordingly. In addition to the gene bodies, we added 500 bp up- and down-stream of the genes.

The plot was produced with the following commands:

$ /deepTools-1.5.2/bin/computeMatrix scale-regions --regionsFileName Dm.genes.indChromLabeled.bed \
--scoreFileName PolII.bw --beforeRegionStartLength 500 --afterRegionStartLength 500 \
--regionBodyLength 1500 --binSize 10 \
--outFileName PolII_matrix_scaledGenes --sortRegions no

$ /deepTools-1.5.2/bin/heatmapper --matrixFile PolII_matrix_scaledGenes \

https://raw.github.com/fidelram/deepTools/master/examples/visual_hm_DmelPolII_small.png


--outFileName PolII_indChr_scaledGenes.pdf \
--plotTitle "Pol II" --whatToShow "heatmap and colorbar"

This is what you would have to select to achieve the same result within Galaxy (pay attention to the fact that you will have to
use two tools, computeMatrix and heatmapper):

computeMatrix



heatmapper

https://raw.github.com/fidelram/deepTools/master/examples/visual_computeMatrix01.png


The main difference between computeMatrix usage on the command line and Galaxy: the input of the regions file
(BED)

https://raw.github.com/fidelram/deepTools/master/examples/visual_heatmapper.png


Note that we supplied just one BED-file via the command line whereas in Galaxy we indicated three different files (one per
chromosome).

On the command line, the program expects a BED file where different groups of genomic regions are concatenated into one
file, where the beginning of each group should be indicated by "#group name".
The BED-file that was used here, contained 3 such lines and could be prepared as follows:

 $ grep ^chr2 AllGenes.bed > Dm.genes.indChromLabeled.bed
 $ echo "#chr2" >> Dm.genes.indChromLabeled.bed
 $ grep ^chr3 AllGenes.bed >> Dm.genes.indChromLabeled.bed
 $ echo "#chr3" >> Dm.genes.indChromLabeled.bed
 $ grep ^chrX AllGenes.bed >> Dm.genes.indChromLabeled.bed
 $ echo "#chrX" >> Dm.genes.indChromLabeled.bed

In Galaxy, you can simply generate three different data sets starting from a whole genome list of Drosophila melanogaster
genes by using the "Filter" tool ("Filter and Sort" --> "Filter") on the entries in the first column three times:

1. c1=="chr2" --> Dm.genes.chr2.bed
2. c1=="chr3" --> Dm.genes.chr3.bed
3. c1=="chrX" --> Dm.genes.chrX.bed

Important parameters for optimizing the visualization

1. sorting of the regions: The default of heatmapper is to sort the values in descending order. You can change that to
ascending, no sorting at all or according to the size of the region (Using the --sort  option on the command line or
advanced options in Galaxy). We strongly recommend to leave the sorting option at "no sorting" for the initial
computeMatrix step.

2. coloring: The default coloring by heatmapper is done using the python color map "RdYlBu", but this can be changed (--
colorMap on the command line, advanced options within Galaxy).

3. dealing with missing data: You have certainly noticed that some gene bodies are depicted as white lines within the
otherwise colorful mass of genes. Those regions are due to genes that, for whatever reason, did not have any read
coverage in the bigWig file. There are several ways to handle these cases:

--skipZeros this is useful when your data actually has a quite nice coverage, but there are 2 or 3 regions where you
deliberately filtered out reads or you don't expect any coverage (e.g. hardly mapable regions). This will only work if
the entire region does not contain a single value.
--missingDataAsZero this option allows computeMatrix do interpret missing data points as zeroes. Be aware of the
changes to the average values that this might cause.
--missingDataColor this is in case you have very sparse data or were missing values make sense (e.g. when
plotting methylated CpGs - half the genome should have no value). This option then allows you to pick out your
favorite color for those regions. The default is black (was white when the above shown image was produced).



2nd example: Summary plots with all genes scaled to the one size and user-specified
groups of genes

Here's the profiler plot corresponding to the heatmap above. There's one major difference though - do you spot it?

We used the same BED file(s) as for the heatmap, hence the 3 different groups (1 per chromosome). However, this time we
used computeMatrix not with scale-regions but with reference-point mode.

$ /deepTools-1.5.2/bin/computeMatrix reference-point --referencePoint TSS \
--regionsFileName Dm.genes.indChromLabeled.bed --scoreFileName PolII.bw \
--beforeRegionStartLength 1000 --afterRegionStartLength 1000 \
--binSize 10 --outFileName PolII_matrix_indChr_refPoint \
--missingDataAsZero --sortRegions no

$ /deepTools-1.5.2/bin/profiler --matrixFile PolII_matrix_indChr_refPoint \
--outFileName profile_PolII_indChr_refPoint.pdf
--plotType fill --startLabel "TSS" \
--plotTitle "Pol II around TSS" --yAxisLabel "mean Pol II coverage" \
--onePlotPerGroup

When you compare the profiler commands with the heatmapper commands, you also notice that we made use of many more
labeling options here, e.g. --yAxisLabel  and a more specific title via -T

This is how you would have obtained this plot in Galaxy (only the part that's different from the above shown command for the
scale-regions version is shown):

computeMatrix

https://raw.github.com/fidelram/deepTools/master/examples/visual_profiler_DmelPolII.png


profiler

https://raw.github.com/fidelram/deepTools/master/examples/visual_computeMatrix03.png
https://raw.github.com/fidelram/deepTools/master/examples/visual_profiler_Gal.png


3rd example: Heatmap with all genes scaled to the one size and kmeans clustering

Instead of supplying groups of regions on your own, you can use the clustering function of heatmapper to get a first
impression whether the signal of your experiment can be easily clustered into two or more groups of similar signal distribution.

Have a look at this example with two clusters. The values correspond to log2ratios(ChIP/input) from a ChIP-seq experiment for
RNA Polymerase II in Drosophila melanogaster:

The plot was produced with the following commands:

$ /deepTools-1.5.2/bin/computeMatrix reference-point \
--regionsFilenName Dm.genes.indChromLabeled.bed \
--scoreFileName PolII.bw \
--beforeRegionStartLength 500 --afterRegionStartLength 5000 \
--binSize 50 \
--outFileName PolII_matrix_TSS

$ /deepTools-1.5.2/bin/heatmapper --matrixFile PolII_matrix_TSS \
--kmeans 2 \
--sortUsing region_length \
--outFileName PolII_two_clusters.pdf \
--plotTitle "Pol II" --whatToShow "heatmap and colorbar"

In Galaxy, these are the screenshots from the commands for computeMatrix and heatmapper:

https://raw.github.com/fidelram/deepTools/master/examples/heatmaps_kmeans_Pol_II_small.png


computeMatrix



https://raw.github.com/fidelram/deepTools/master/examples/Gal_clustHM_computeMatrix.png


heatmapper

https://raw.github.com/fidelram/deepTools/master/examples/Gal_clustHM_heatmapper.png


When the --kmeans  option is chosen and more than 0 clusters are specified, heatmapper will run the k-means clustering
algorithm. In this example, we wanted to divide Drosophila melanogaster genes into two clusters. As you can see above, the
algorithm nicely identified two groups - one with mostly those genes with lots of Pol II at the promoter region (top) from those
genes without Poll II at the promoter (bottom).
Please note that the clustering will only work if the initial BED-file used with computeMatrix contained only one group of genes.

The genes belonging to each cluster can be obtained by via --outFileSortedRegions  on the command line and "advanced
output options in Galaxy". On the command line, this will result in a BED file where the groups are separated by a hash tag. In
Galaxy, you will obtain individual data sets per cluster.

To have a better control on the clustering it is recommended to load the matrix raw data into specialized software like
cluster3 or R. You can obtain the matrix via the option --outFileNameMatrix  on the command line and by the "advanced
output options" in Galaxy. The order of the rows is the same as in the output of the --outFileSortedRegions  BED file.

http://en.wikipedia.org/wiki/K-means_clustering
http://bonsai.hgc.jp/%7Emdehoon/software/cluster/
http://www.r-project.org/


Glossary
Like most specialized fields, next-generation sequencing has inspired many an acronym. We are trying to keep track of those
abbreviations that we heavily use. Do make us aware if something is unclear: deeptools@googlegroups.com

If you are unfamiliar with the file formats of next-generation sequencing data, do have a look on the next page.

Abbreviations

Acronym full phrase Synonyms/Explanation

-seq -sequencing indicates that an experiment was completed by DNA sequencing using NGS

ChIP-seq
chromatin
immunoprecipitation
sequencing

NGS technique for detecting transcription factor binding sites and histone
modifications (see entry "Input" for more information)

DNase deoxyribonuclease micrococcal nuclease

HTS
high-throughput
sequencing

next-generation sequencing, massive parallel short read sequencing, deep
sequencing

Input --

control experiment typically done for ChIP-seq experiments (see above) - while
ChIP-seq relies on antibodies to enrich for DNA fragments bound to a certain
protein, the input sample should be processed exactly the same way, excluding
the antibody. This way, one hopes to account for biases introduced by the sample
handling and the general chromatin structure of the cells

MNase
micrococcal
nuclease

DNase

NGS
next-generation
sequencing

high-throughput (DNA) sequencing, massive parallel short read sequencing, deep
sequencing

RPGC
reads per genomic
content

used to normalize read numbers (also: normalize to 1x sequencing depth),
sequencing depth is defined as: (total number of mapped reads * fragment
length) / effective genome size.

RPKM
reads per kilobase
per million reads

used to normalize read numbers, the following formula is used by bamCoverage:
RPKM (per bin) = number of reads per bin / ( number of mapped reads (in
millions) * bin length (kb))

mailto:deeptools@googlegroups.com


File Formats
Data obtained from next-generation sequencing data must be processed several times. Most of the processing steps are
aimed at extracting only those information that are truly needed for a specific down-stream analysis and to discard all the
redundant entries. Therefore, specific data formats are often associated with different steps of a data processing
pipeline. These associations, however, are by no means binding, but you should understand what kind of data is
represented in which data format - this will help you to select the correct tools further down the road.

Here, we just want to give very brief key descriptions of the file, for elaborate information we will link to external websites (links
to be found in our online wiki). Be aware, that the file name sorting here is purely alphabetically, not according to their usage
within an analysis pipeline that is depicted here. 
For more information on the different tool collections mentioned in the figure, please check the following links:

deepTools wiki: http://github.com/fidelram/deepTools/wiki
samtools: http://samtools.sourceforge.net/http://samtools.sourceforge.net/
UCSCtools download: http://hgdownload.cse.ucsc.edu/admin/exe/
BEDtools: http://bedtools.readthedocs.org/en/latest/

2bit

compressed, binary version of genome sequences that are often stored in [FASTA][]
most genomes in 2bit format can be found at UCSC]
[FASTA][] files can be converted to 2bit using the UCSC programm faToTwoBit available for different platforms at UCSC
more information can be found here or from UCSC

BAM

typical file extension: .bam

https://github.com/fidelram/deepTools/wiki
http://samtools.sourceforge.net/http://samtools.sourceforge.net/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://bedtools.readthedocs.org/en/latest/
https://raw.github.com/fidelram/deepTools/master/examples/flowChart_FileFormats_small.png
http://hgdownload.cse.ucsc.edu/gbdb/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://jcomeau.freeshell.org/www/genome/2bitformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html#format7


binary file format (complement to SAM)
contains information about sequenced reads after alignment to a reference genome
each line = 1 mapped read, with information about:

its mapping quality (how certain is the read alignment to this particular genome locus?)
its sequencing quality (how well was each base pair detected during sequencing?)
its DNA sequence
its location in the genome
etc.

highly recommended format for storing data
to make a BAM file human-readable, one can, for example, use the program samtools view (from UCSC tools)
for more information, see below for the definition of SAM files

bed

typical file extension: .bed
text file
used for genomic intervals, e.g. genes, peak regions etc.
actually, there is a rather strict definition of the format that can be found at UCSC
for deepTools, the first 3 columns are important: chromosome, start position of the region, end position of the genome
do not confuse it with the bedGraph format (eventhough they are quite similar)
example lines from a BED file of mouse genes (note that the start position is 0-based, the end-position 1-based, following
UCSC conventions for BED files):

chr1    3204562 3661579 NM_001011874    Xkr4    -   
chr1    4481008 4486494 NM_011441   Sox17   -   
chr1    4763278 4775807 NM_001177658    Mrpl15  -   
chr1    4797973 4836816 NM_008866   Lypla1  +   

bedGraph

typical file extension: .bg, .bedgraph
text file
similar to BED file (not the same!), it can ONLY contain 4 columns and 4th column MUST be a score
again, read the UCSC description for more details
4 exemplary lines from a bedGraph file (like BED files following the UCSC convention, the start position is 0-based, the
end-position 1-based in bedGraph files):

chr1 10 20 1.5
chr1 20 30 1.7
chr1 30 40 2.0
chr1 40 50 1.8

bigWig

typical file extension: .bw, .bigwig
binary version of a bedGraph file
usually contains 4 columns: chromosome, start of genomic bin, end of genomic bin, score
the score can be anything, e.g. an average read coverage
UCSC description for more details

FASTA

typical file extension: .fasta
text file, often gzipped (--> .fasta.gz)
very simple format for DNA/RNA or protein sequences, this can be anything from small pieces of DNA or proteins to
entire genome information (most likely, you will get the genome sequence of your organism of interest in fasta format)
see the 2bit file format entry for a compressed alternative of the fasta format
example from wikipedia showing exactly one sequence:

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

https://github.com/fidelram/deepTools/wiki/Glossary#wiki-sam
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-sam
http://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bedgraph
https://genome.ucsc.edu/FAQ/FAQformat.html#format1.8
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bedgraph
https://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
http://en.wikipedia.org/wiki/FASTA_format


EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG
LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL
GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
IENY

FASTQ

typical file extension: .fastq, fq
text file, often gzipped (--> .fastq.gz)
contains raw read information (e.g. base calls, sequencing quality measures etc.), but not information about where in the
genome the read originated from
example from the wikipedia page

A FASTQ file containing a single sequence might look like this:
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

The character '!' represents the lowest quality while '~' is the highest. 

SAM

typical file extension: .sam
should be the result of an alignment of sequenced reads to a reference genome
each line = 1 mapped read, with information about its mapping quality, its sequence, its location in the genome etc.
it is recommended to generate the binary (compressed) version of this file format: BAM
for more information, see the SAM specification
two exemplary lines

each one corresponds to one read (named r001 and r002 here)
the different columns contain various information about each read, e.g. which chromosome they were mapped to
(here: chr1) and the left-most mapping position in the genome (here: 7 and 9 on chr1); the flag in the second
column summarizes multiple information about each single read at once (in hexadecimal encoding) (see below for
more information on the flag)

r001 163 chr1 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 chr1 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *

the flag contains the answer to several yes/no assessments that are encoded in a single number. The questions are the
following ones:

template having multiple segments in sequencing = Is the read part of a read pair?
each segment properly aligned according to the aligner = Was the read properly paired?
segment unmapped = Is the read unmapped?
next segment in the template unmapped = Is the mate unmapped?
reverse complemented = Did the read map to the reverse strand?
next segment in the template is reversed = Did the mate map to the reverse strand?
the first segment in the template = Is this read the first one in the pair?
the last segment in the template = Is this read the second one in the pair?
secondary alignment = Is this not the primary (i.e. unique optimal) alignment for the read?
not passing quality controls = Did the read not pass the quality control?
PCR or optical duplicate = Was this read a PCR or optical duplicate?

for more details on the flag, see this thorough explanation or this more technical explanation

http://en.wikipedia.org/wiki/Fastq
https://github.com/fidelram/deepTools/wiki/Glossary#wiki-bam
http://samtools.sourceforge.net/SAMv1.pdf
http://ppotato.wordpress.com/2010/08/25/samtool-bitwise-flag-paired-reads/
http://blog.nextgenetics.net/?e=18


Links and references

Literature

Benjamini and Speed, Nucleic Acids Research (2012): http://nar.oxfordjournals.org/content/40/10/e72
Diaz et al., Stat. Appl. Gen. Mol. Biol. (2012): http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-
6115.1750.xml

For more NGS-related literature, see our collection at the deepTools web server: http://deeptools.ie-
freiburg.mpg.de/u/fduendar/p/useful-bioinfo-literature

Additional bioinformatic tools

bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
cluster3: http://bonsai.hgc.jp/~mdehoon/software/cluster/
IGV (Integrative Genome Browser): http://www.broadinstitute.org/igv/
k-means clustering: http://en.wikipedia.org/wiki/K-means_clustering
R: http://www.r-project.org/

File format information

SAM file specification: http://samtools.sourceforge.net/SAMv1.pdf 
File formats explained at UCSC: http://genome.ucsc.edu/FAQ/FAQformat.html#format1

Fidel Ramírez, Friederike Dündar, Sarah Diehl, Björn A. Grüning, Thomas Manke

Bioinformatics Group, Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg & Department of Computer
Science, University of Freiburg

Web server (incl. sample data): http://deepTools.ie-freiburg.mpg.de
Code: https://github.com/fidelram/deepTools
Wiki & Tutorials: https://github.com/fidelram/deepTools/wiki

http://nar.oxfordjournals.org/content/40/10/e72
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml
http://deeptools.ie-freiburg.mpg.de/u/fduendar/p/useful-bioinfo-literature
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bonsai.hgc.jp/%7Emdehoon/software/cluster/
http://www.broadinstitute.org/igv/
http://en.wikipedia.org/wiki/K-means_clustering
http://www.r-project.org/
http://samtools.sourceforge.net/SAMv1.pdf
http://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://deeptools.ie-freiburg.mpg.de
https://github.com/fidelram/deepTools/
https://github.com/fidelram/deepTools/wiki
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