
i
i

“discoSnp˙NAR3˙add˙file1” — 2014/9/23 — 12:09 — page 1 — #1 i
i

i
i

i
i

Published online XX XXX 2014 Nucleic Acids Research, 2014, Vol. XX, No. XX 1–5
doi:10.1093/nar/gkn000

Reference-free detection of isolated SNPs
Additional File 1
Raluca Uricaru 1,2,3∗, Guillaume Rizk 4, Vincent Lacroix 5,6, Elsa Quillery 7,8, Olivier
Plantard 7,8, Rayan Chikhi 9, Claire Lemaitre 4∗ and Pierre Peterlongo 4∗

1University of Bordeaux, CNRS / LaBRI, F-33405 Talence, France, 2University of Bordeaux, CBiB, F-33000
Bordeaux, France, 3INRA, UMR1349 IGEPP, Le Rheu, France, 4GenScale, INRIA Rennes Bretagne-Atlantique,
IRISA, Rennes, France, 5BAMBOO, INRIA Grenoble Rhone-Alpes, Lyon, France, 6Laboratoire de Biométrie et
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DATA SIMULATION AND EVALUATION PROTOCOLS

Data simulation
In the main paper, we present the results for several datasets
that were simulated from two distinct data sources:

• Human chomosome 1 (GRCh37/hg19 reference
assembly version), ≈ 249 million base pairs. To obtain
a realistic distribution of SNPs and genotypes, SNP
positions are extracted from two vcf files produced by
the “1000 genome project” (phase 1 release). In detail,
two vcf files were retrieved from the “1000 genome
project” (phase 1 release), corresponding to the human
chromosome 1 of two individuals: HG00096 and
HG00100. We then generated the genome sequences
for the two diploids, i.e. two sequences per individual,
by placing the substitutions listed in the vcf files on the
human reference sequence (GRCh37/hg19 reference
assembly version). In the case of a homozygous SNP,
the same nucleotide was placed on the two sequences,
while for a heterozygous SNP, one sequence was
randomly chosen for each of the two nucleotides.

• Bacterial Escherichia coli K- 12, MG1655 strain, ≈ 4.6
million base pairs. From this reference sequence, we
generated 30 Escherichia coli individuals by simulating
SNPs based on a site frequency spectrum pattern,
i.e. most SNPs are in one sample, half as many in
two samples, a third in three samples, and so on.
More precisely we introduced Xi=max( S

i2i
,1) SNPs

occurring in i of the 30 genomes (for i in [1,29]), with
S being the total number of sites that were mutated,
i.e. 69,600 sites in our case. SNPs were distributed
uniformly along the genomes.

We then used our own read simulator, Mutareads,
to simulate an Illumina sequencing for the two human
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diploids, and for the 30 bacterial individuals. The sequencing
simulation was carried out by sampling equal-length reads
(100 bp) from each sequence, with a uniform probability
distribution, on a 40x coverage basis (2x20x for the diploid
individuals). Substitution errors were uniformly distributed
along each read with a fixed probability (1%).

DISCOSNP, as well as the other reference-free SNP
calling tools, were run on the following datasets: one diploid
individual (HG00096), the two diploid individuals (HG00096
and HG00100), two haploids (among the 30 Escherichia coli
individuals), three haploids and so on, up to 30.

Precision and recall computation
For the tests on simulated data, both in the main paper
and in this file, we provide recall and precision measures.
For this purpose, we produce a multi-fasta file for each
simulated dataset, ref snps.fa. These files are formatted
as the DISCOSNP output and contain all the isolated SNPs
among the complete set of generated SNPs for the given
dataset. A SNP is considered as isolated if among the whole
subset of considered simulated genomes, no other SNPs are
simulated in the k−1 positions before and after the SNPs
locus. They will be subsequently used as exhaustive and exact
reference lists to compute precision and recall for each dataset.

More specifically, a ref snps.fa file contains pairs of
sequences, where each pair represents an isolated SNP (one
sequence corresponds to one path of the SNP, and the second
corresponds to the other path). Every such sequence (or path)
has a 2k−1 length, where the first k−1 and the last k−1
characters are identical between the two paths of a SNP, while
the two characters placed on the kth position correspond to the
mutation. Predicted SNPs are then mapped to these reference
SNP sequences using GASSST (1). This enables to validate
the predicted SNPs, i.e. the 2k−1 sequences corresponding
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to the SNPs detected by DISCOSNP (or by any other tool)
are mapped on the reference SNP sequences; a predicted SNP
is validated if both its paths map perfectly and entirely (with
100% identity) the two paths of one of the SNPs present in this
ref snps.fa file.

Precision and recall are then computed as follows. The
results of the mapping enable to compute the true positives
(TP ), i.e. predicted SNPs whose both paths are perfectly
mapped on two paths of the ref snps.fa file, and the false
positives (FP ), i.e. the other predicted SNPs. We call false
negatives (FN ) the non mapped SNPs from the reference list.

Finally, the precision is computed as the number of TP
divided by the total number of SNPs found by DISCOSNP,
while the recall is given as the number of TP divided by the
total number of SNPs in the reference list.

In the case when more than two genomes are compared
and some branchings are allowed in the bubbles, some non-
isolated SNPs can be found by DISCOSNP. This happens
when there exists at least two genomes (or individuals) among
the compared ones with distinct genotypes for the considered
SNPs but the same genotype for the other close SNPs. Such
a SNP can be detected by DISCOSNP, but as we focus
on isolated SNPs only, it would be considered as a false
positive by our evaluation process. To compute more relevant
precision values, only predictions that do not correspond
to any simulated SNP (isolated or not) were considered as
false positives. This was used in the main paper for the
two human (chromosome 1) diploids experiment when using
DISCOSNP or BUBBLEPARSE with parameters allowing for
some branchings inside the bubbles (parameters -b 1 and
depth=1 respectively).

HUMAN FULL RESULTS

Tool Parameters Precision Recall
F DISCOSNP b=0, c=4, k=31 96.98 71.99
F BUBBLEPARSE d0, c=3, k=31 95.78 72.71

CORTEX k31, c=auto 96.64 68.30
F CORTEX k61, c=auto 97.22 69.70
F DISCOSNP b1, c=4, k=31 92.3∗(88.10) 79.22
F BUBBLEPARSE d1, c=3, k=31 91.66∗(87.47) 76.60

BUBBLEPARSE d2, c=3, k=31 86.20∗ (81.88) 79.80
BUBBLEPARSE d3, c=3, k=31 78.70∗ (74.51) 82.20
hybrid strategy unfiltered 95.50 72.91

F hybrid strategy filtered 96.18 72.86

Table 1. Results obtained by various tools with various parameters on human
chromosome 1 dataset composed of two individuals (described in Section
“Data simulation”). Lines starting with F were already indicated in the
manuscript. ∗ denotes that precision was computed by considering as false
positives only bubbles that do not correspond to any simulated SNP (isolated
or not). Note that c=3 for BUBBLEPARSE and c=4 for DISCOSNP are
equivalent as they filter out data seen three times or less.

In the paper only best results for each tested tool are
presented. The Table 1 presents the full obtained results. The
hybrid strategy (SOAP+bowtie2+GATK) provides SNPs with
low coverage, which mainly correspond to false positives. As
DISCOSNP and other tested tools filter out low covered k-
mers (seen less than 4 times in each dataset), we decided to
apply the same filtering for the hybrid strategy, i.e. filtering
out SNPs covered less than four times. The command lines
that were used for the different tools are indicated in Table 2.

DETAILS ABOUT THE SACCHAROMYCES
CEREVISIAE EXPERIMENT

Preparing the data
The 24 read sets were downloaded from the NCBI Sequence
Read Archive (with the accession number SRA054922). Read
pairs were separated using the fastq-dump command from sra-
toolkit, with the –split-3 option. The SRA read file names
are detailed in Table 3. Read sets were prepared applying the
protocol from the Kvitek study (2). The obtained coverages
range from 348x to 1536x (see Table 4) depending on the
experiment.

Table 3. SRA read file names associated to their respective experiment in (2)
study. Each value corresponds to the SRR file name. For instance, 515969
corresponds to SRR515969.sra file.

Generation
007 070 133 196 266 322 385 448

E1 515969 519088 519089 519090 519091 519092 519093 519094
E2 515482 515483 515484 515966 515485 515486 515967 515968
E3 515487 515488 519064 519081 519084 519085 519086 519087

We extracted the set of isolated SNPs among the
validated ones in (2). We generated the set of associated
bubbles in fasta format using the S288c reference sequences
from the Saccharomyces Genome Database (http://www.
yeastgenome.org/). These bubbles were used as a
reference for estimating DISCOSNP recall.

Table 4. Coverage per generation and per population (average per value on
both files of the pair). RC stands for “Read Coverage”, and it is computed
as

∑
read sizes× 1

genome size . KC stands for “k-mer coverage”, and it is

computed as
∑

read sizes−number of reads×(k−1)
genome size .

Generation
007 070 133 196 266 322 385 448

E1 RC 797 1061 1142 1138 1209 1062 1478 1536
E1 KC 423 609 649 646 715 621 945 981
E2 RC 348 407 369 396 479 505 458 619
E2 KC 184 217 194 208 260 278 258 359
E3 RC 763 704 636 756 829 736 636 868
E3 KC 409 391 349 423 455 419 341 500

Running DISCOSNP
DISCOSNP was run independently on the three populations
E1, E2 and E3, with defaults parameters, except for the c value
that was fixed to 11. The c=11 value was chosen with respect
to minimal k-mer coverage observed in the data (see Table 4).
A first experiment was performed with -b 1 option and another
experiment with -b 2. For each experiment, the 16 (8x2) read
sets were used collectively. For instance the E1 experiment
was performed using the following command line:
./run_discoSnp.sh -b 1 -c 11 -r
"E1_gen007_forward.fq.gz E1_gen007_reverse.fq.gz
E1_gen070_forward.fq.gz E1_gen070_reverse.fq.gz
E1_gen133_forward.fq.gz E1_gen133_reverse.fq.gz
E1_gen196_forward.fq.gz E1_gen196_reverse.fq.gz
E1_gen266_forward.fq.gz E1_gen266_reverse.fq.gz
E1_gen322_forward.fq.gz E1_gen322_reverse.fq.gz
E1_gen385_forward.fq.gz E1_gen385_reverse.fq.gz
E1_gen448_forward.fq.gz E1_gen448_reverse.fq.gz"

ANALYSIS OF THE ROBUSTNESS OF DISCOSNP
RESULTS

Simulation protocol
This section proposes additional results on simulated datasets,
when varying the sequencing simulation process (read

http://www.yeastgenome.org/
http://www.yeastgenome.org/
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DISCOSNP

./run_discoSnp.sh -r "individualHG00096_reads.fasta.gz individualHG00100_reads.fasta.gz" -k 31 -c 4 -p res_human

BUBBLEPARSE

/bin/cortex_bub_31 -k 31 -n 26 -b 70 -c 100 -s 3 -i individualHG00096_reads.fasta -t fasta -o human1.ctx
/bin/cortex_bub_31 -k 31 -n 26 -b 70 -c 100 -s 3 -i individualHG00100_reads.fasta -t fasta -o human2.ctx
echo "human1.ctx 0" > ctxfiles.txt
echo "human2.ctx 1" >> ctxfiles.txt
/bin/cortex_bub_31 -k 31 -n 26 -b 70 -w $depth,41 -c 100 -s 3 -i ctxfiles.txt -t binary -f snpout
echo "EXPECTEDCOVERAGE \"0,10,100,0\"" > bpoptions.txt
echo "EXPECTEDCOVERAGE \"1,10,100,0\"" >> bpoptions.txt
echo "MINIMUMCONTIGSIZE \"100\"" >> bpoptions.txt
./bin/bubbleparse_31 -f snpout -t table.txt -c table.csv -r table.fa -k 31 -o bpoptions.txt -x -d log.txt

CORTEX

perl ../../CORTEX_release_v1.0.5.21/scripts/calling/run_calls.pl --first_kmer 31 --last_kmer 61 --kmer_step 30 \
--fastaq_index INDEX --auto_cleaning yes --bc yes --pd no --outdir "cortex_2humans_no_ref" \
--outvcf "cortex_2humans_no_ref" --ploidy 2 --genome_size 249250621 \
--stampy_bin /mnt/cbib/read2snps/stampy-1.0.23/stampy.py --mem_height 25 --mem_width 100 \
--vcftools_dir /mnt/cbib/read2snps/vcftools_0.1.9/ --do_union yes --ref Absent \
--workflow joint --logfile log.txt,f

Hybrid approach

#Soap and filtering
SOAPdenovo-63mer pregraph -s soap.config -o soapNARHUM -K 31 -d 5
SOAPdenovo-63mer contig -g soap NARHUM
python filter_fasta_by_length.py soapNARHUM.contig NARHUM_ref.contigs.fa 100
#bowtie
bowtie2-build -f NARHUM_ref.contigs.fa NARHUM_ref.contigs.fa_index ;
bowtie2 -f --non-deterministic --threads 8 --rg-id "readsnp" --rg "SM:readsnp" --rg "PL:Illumina" \
--rg "LB:simumima" -x NARHUM_ref.contigs.fa_index -U individualHG00096_reads.fasta.gz \
| samtools view -bS - > NARHUM_bw2.bam;
bowtie2 -f --non-deterministic --threads 8 --rg-id "readref" --rg "SM:readref" --rg "PL:Illumina" \
--rg "LB:simumima" -x NARHUM_ref.contigs.fa_index -U individualHG00100_reads.fasta.gz \
| samtools view -bS - > NARHUM_bw2r.bam;
#GATK analysis
java -Xmx4g -jar ./CreateSequenceDictionary.jar R=NARHUM_ref.contigs.fa O=NARHUM_ref.contigs.dict
java -Xmx8g -jar GenomeAnalysisTK.jar \
-R NARHUM_ref.contigs.fa \
-T UnifiedGenotyper \
-glm SNP \
-I NARHUM_bw2.bam \
-I NARHUM_bw2r.bam \
-o NARHUM_snp.vcf

Table 2. Command lines for DISCOSNP, BUBBLEPARSE, CORTEX and for the hybrid approach, which were used on the human dataset described in Section
“Data simulation”. However, some of BUBBLEPARSE scripts needed further manual tuning in order to be run.

simulator and sequencing coverage), when varying the density
and the repartition of the SNPs, and when varying the
DISCOSNP main parameters (k and c).

The first dataset contains two E. coli individuals simulated
as explained in Section “Data simulation and evaluation
protocols” (100bp long Illumina reads with uniformly
distributed errors, for a 40x coverage).

The second dataset was simulated from the human
chromosome 1 (hg19 assembly), by generating a mutated
sequence in which only uniformly distributed homozygous
SNPs were simulated at 0.1% SNP rate. Sequencing of both
the reference and the mutated sequence was then simulated
for a 50x coverage. Note that the simulations made on the
human sequence are distinct from those presented in the paper,
thus explaining why results are slightly different from those
presented in the paper with same parameters.

Results when varying the simulation parameters
Influence of the read simulation method

Knowing that SNP detection methods can be misled by
sequencing errors, as they potentially generate false positives,
we checked the robustness of DISCOSNP with respect to
the read simulator. Besides Mutareads, five simulation tools
were tested: Art (4), GemSim (5), Metasim (6), SimSeq (7),
and WGSim from the Samtools package (8), each of them
implementing a specific error profile. The six simulators were
applied on the two E. coli individuals, as described in Section
“Simulation protocol”. Results are summarized in Table 5.
These results show that, except for Art, DISCOSNP produces
similar results regardless the simulation tool. Poor results in
Art case are most certainly due to its high error rate, i.e. it
simulates more than six errors per read on average, which is
not consistent with what is happening in real data. Moreover,
GemSim was, in average, 100 times slower than the other read
simulators, thus making it unusable on large datasets such as
human data.

For the human experiment, due the previously exposed
reasons, we excluded Art and GemSim simulators. Once again,
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Table 5. DISCOSNP results (with c=4 and k=31), on data simulated from
the E. coli dataset with several read simulators.

Read simulator Recall (%) Precision (%)
Art 0 33.3

Gemsim 98.6 98.7
Metasim 97.6 98.1

Mutareads 98.6 97.7
SimSeq 98.8 98.8
WGSim 98.6 98.7

results in Table 6 show that DISCOSNP produces similar
results regardless the simulation method.

Table 6. DISCOSNP results (with c=5 and k=31), on data simulated from
human chromosome 1 with several read simulators.

Read simulator Recall (%) Precision (%)
Metasim 87.1 90.3

Mutareads 86.6 90.5
SimSeq 87 90.6
WGSim 87 90.5

As we showed that DISCOSNP results are independent of
the read simulator that is used, we chose Mutareads to perform
the simulation experiments presented in the paper and in this
file, as it is the fastest among the tested simulators.

Influence of the sequencing depth
In order to estimate the effect of the read coverage on

DISCOSNP results, we performed simulations with Mutareads
on the human chromosome 1 sequence by using a range of
coverage values. The results presented in Table 7 show that
the read coverage influences the result quality. As expected,
the higher the read coverage, the better the precision/recall
results. However, these results suggest that even for coverage
values as low as 20x, DISCOSNP calls 79.5% of SNPs, while
maintaining a good precision (89.9%).

Table 7. DISCOSNP precision and recall results on simulated datasets
generated from human chromosome 1, with increasing sequencing depths
(using k=31).

Coverage min coverage
value (c) Recall % Precision %

10x 1 65.9 73.7
20x 2 79.5 89.9
30x 3 84.5 90.3
40x 4 86.0 90.4
50x 5 86.6 90.5

Influence of the SNP density
In order to estimate the influence of the SNP density on
DISCOSNP results, we generated datasets with densities
varying from 0.06% (based on (9)), to 0.1%, and to to an
over-estimation of 1% of SNPs.

In the results presented in Table 8, precision varies from
85.8% to 98.3%. The higher the SNP density, the higher the
precision. This reveals that the number of false positives is
stable regardless the SNP simulation method (19088±2%),
while the number of true positives grows linearly with the
number of isolated SNPs.

SNP number DISCOSNP
SNP

density all isolated Precision Recall

1% 2,253,177 1,248,158 98.3% 84.8%
0.1% 224,876 211,492 90.5% 86.6%

0.06% 138,383 133,621 85.8% 86.7%

Table 8. DISCOSNP results on uniformly simulated SNP sets, with different
SNP densities, from the human chromosome 1

Results when varying DISCOSNP parameters
Influence of the k value

Any algorithmic method based on de Bruijn graphs is
highly dependent on the k-mer size. In order to analyze the
influence of the k-value on DISCOSNP results, we performed
an experiment on human chromosome 1. The results that
are shown in Figure 1 were produced with DISCOSNP for
k-values going from 15 to 45.

Figure 1. DISCOSNP recall and precision results on the human
chromosome 1 dataset, for increasing k values and with c=5.

These results confirm that the k-value influences the quality
of the results. For small k-values, due to the increasing number
of branching k-mers, a larger number of branching bubbles
are discarded, which leads to a low recall. Precision is also
affected as there is an increasing number of bubbles that are
generated by inexact repeats. Indeed, an inexact repeat of
length 2k−1 generates a bubble, and the frequency of such
repeats in the genomes, increases when k decreases. On the
other hand, the recall decreases for large k values (&37), as
there are fewer reads that overlap on at least k characters.

With current NGS reads, a good trade-off value for k is
≈31. As presented in Figure 1, the best precision/recall is
reached with k=37. However, values that are larger or equal
to 32 are usable at the cost of either larger RAM consumption
or longer data structure creation times. This study also shows
that, even if the k value influences DISCOSNP results, any
choice of k between 25 and 39 provides high quality results
(with precision varying from 88.1% to 92.2% and recall
varying from 82.3% to 86.7%).

Influence of the minimal coverage value
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DISCOSNP offers the possibility to filter out k-mers
whose number of occurrences in all read set is below a user-
defined threshold, thus enabling to discard k-mers that are
most probably due to sequencing errors. The results that are
presented in Figure 2 are obtained with DISCOSNP (k=31)
on the 50x dataset simulated from human chromosome 1.

These results show that for large minimal coverage values
(≥6), recall decreases due to low covered SNPs, while
precision slightly decreases as the proportion of SNPs due to
inexact repeats increases. With no filter (c=1), sequencing
errors are not filtered out, and a high ratio of the reported
SNPs are due to sequencing errors. Moreover, recall is slightly
poorer as the graph is more complex, and more bubbles are
discarded by DISCOSNP (as they are branching).

Figure 2. DISCOSNP recall and precision results on the human
chromosome 1 dataset, with respect to the minimal coverage value.

RUNNING TIMES FOR THE MULTIPLE INDIVIDUALS
STUDY

Here, we present the comparative running times of DISCO-
SNP, CORTEX and the hybrid approach when analyzing an
increasing number of read sets. The results, presented in
Figure 3, were obtained in the study concerning the 30 haploid
datasets simulated from E. coli. They show that running
times grow linearly with respect to the number of individuals
regardless the method, and that DISCOSNP runs faster than
the two other methods.
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