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Abstract
This document contains the supplementary results for an article titled ”Annotating RNA motifs in sequences and
alignments”.
It includes further details of the benchmarking tests of the annotation software as well as secondary structures for each
of the motifs included in RMfam.
All the data and scripts associated with this work is available from: https://github.com/ppgardne/RMfam
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Summary

In the following document we present supplementary methods,
results and figures relating to the RMfam resource:

1. Figures 1-8 illustrate secondary structure diagrams for
each of the RMfam motifs. Figure 1 contains a Legend,
detailing the color and symbol schemes used to illus-
trate different evolutionary constraints on the different
structures.

2. Figure 9 illustrates our estimates of the accuracy of
using covariance models to annotate RNA motifs on
sequences and alignments.

3. Figures 10-43 contain secondary structures and the re-
sults of per-motif benchmarks.

4. Figures 44&45 illustrate improvements to Rfam (v11.0)
alignments and consensus structures based upon RM-
fam annotations.

5. Figure 46 illustrates the network of the 50 highest scor-
ing RMfam to Rfam mappings.

Benchmarking

In order to ensure that our approach provides accurate pre-
dictions we have carried out extensive benchmarking of the
covariance models. These have been broken into three phases.
We ran three different benchmark approaches RMfam se-
quence benchmark, RMfam2Rfam alignment benchmark and
a RMfam2Rfam sequence benchmark on all the RMfam co-
variance models.

These benchmarks can be distinguished primarily by what
is considered a true positive.

RMfam sequence benchmark
Unfortunately, most of the alignments in RMfam are com-
posed of few sequences. In fact, the median number of se-
quences in the RMfam alignments is just 34.5. This means
that idealised benchmarking strategies, such as cross-validation,
are unlikely to provide useful results. Therefore we tested
these covariance models on the training (seed) sequences, us-
ing a large negative control. This consisted of 10 permuted
sequences for each seed sequence and 10 permuted sequences
for each PDB sequence [1]. In order to control for sequence
composition biases the di-nucleotide content was preserved
between the native and permuted sequences [2]. Also, in order
to identify members of the motif family with solved structures,
we ran the CMs over 11,508 nucleotide sequences extracted
from the June 2014 release of PDB.

We used the results of this benchmark to identify a bit
score threshold, this value ideally discriminates between the
true members of the family and the negative control (per-
muted) sequences. In practise, a slightly lower than optimal
threshold is generally selected as false positives are generally
considered to be more desirable than false negatives.

The results of these tests are illustrated in Supplementary
Figures 10-43.

RMfam2Rfam alignment benchmark
There are many instances of RNA families (Rfam) with good
evidence that they host RNA motifs. Many of these have been
published in the literature. For the purposes of benchmarking
we have curated a collection of motifs in Rfam, including
annotating the evidence associated with these (See Supple-
mentary Table 1), the bulk (261/446) of these are derived from
Cruz and Westhof (2011) [3], 37 are from other publications
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 3, 17, 18, 19] and
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148 were curated by ourselves. These connections between
RMfam and Rfam cover 238/2208 Rfam families and 21/34
RMfam motifs.

In order to automate the prediction of motifs in Rfam align-
ments we built a Perl wrapper (rmfam scan.pl), which is avail-
able on GitHub: http://github.com/ppgardne/RMfam.
Our approach begins by making the input Rfam (version 11.0)
seed alignments non-redundant by filtering out sequences that
are more than 90% identity to each other. This threshold was
selected as most (87%) of the Rfam (v10.1) alignments have
sequences more divergent than 90% similar and this threshold
is well above the identity limit where the accuracy of RNA
sequence alignment falls [20, 21].

We annotate the remaining sequences with each RMfam
motif, using the score threshold determined during the “RM-
fam sequence benchmark”. We further filter these annotations
by selecting only those that are identified in two or more and
≥ 10% of the sequences in each Rfam alignment.

We experimented with a number of approaches for gener-
ating negative control alignments that preserved the character-
istics of sequence conservation found in the Rfam alignments,
including multiperm [22], SISSIz [23], “esl-shuffle” [24] and
“shuffle-aln.pl” from the RNAz package [25]. We selected
shuffle-aln.pl for generating our negative controls because it
(A) ran on our computers and (B) did not significantly alter
key characteristics of the alignments e.g. sequence lengths
and sequence identity (data not shown).

We experimented with a number of summary statistics for
identifying “good” matches between our motifs and Rfam.
These included the fraction of annotated sequences, a tree
weighted sum of bit scores [26] and summing all bit scores
for each motif in each Rfam alignment (See Supplementary
Figure 9). We selected the latter (sum of bit scores) as the
preferred summary statistic, as this provided the maximum
Matthew’s Correlation Coefficient (MCC) of all the measures
we tested and is trivial to compute (Figure 9).

RMfam2Rfam sequence benchmark
The depths of Rfam seed alignments can vary from 2 to 1,020
sequences. Consequently, measures like sum-of-bits can be a
reflection of the numbers of sequences in alignments rather
than the likelihood that they host a motif. In order to com-
pensate for this we sampled up to 5 sequences from each
Rfam seed alignment, and ran a sequence annotation over
these sequences (skipping the similarity reduction and the
minimum number of sequences filters used for the alignment
benchmark). Ten shuffled versions of each sampled Rfam
sequence were also generated and annotated.

Definitions of performance measures
In the following results we display a range of performance
measures for all RMfam annotations. We briefly summarize
these below. Each prediction is classified as either a true
positive (TP), true negative (TN), false positive (FP) or false
negative (FN).

The totals of these can be used to compute a range of
performance statistics. These include the Sensitivity or frac-
tion true data that are correctly assigned, the Specificity or the
fraction of false data that are correctly assigned, the Positive
Predictive Value (PPV) or the fraction of predicted trues that
are correct, the Negative Predictive Value (NPV) or the frac-
tion of false predictions that are correct, the False Discovery
Rate (FDR) or the fraction of true predictions that are incor-
rect, the Accuracy (ACC) or the fraction of all predictions
(true and false) that are correct, the False Positive Rate (FPR)
or the fraction of false predictions that are actually false.

Finally, a common measure for determining the accuracy
of a method is to compute the Matthew’s Correlation Coef-
ficient (MCC). This measure ranges between +1 and −1, a
value of +1 indicates a perfect discrimination between true
and false members, a value of 0 implies no predictive power
and a value −1 indicates a completely imperfect discrimina-
tion between true and false positives.

Sensitivity =
T P

T P+FN
Speci f icity =

T N
FP+T N

PPV =
T P

T P+FP
NPV =

T N
T N +FN

FDR =
FP

T P+FP
FPR =

FP
FP+T N

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

ACC =
T P+T N

T P+T N +FP+FN

Individual motif performance
The following figures (S10 to S43) illustrate the annotation
accuracy for each of the motifs in RMfam. On the far left of
each figure is an illustration of the motif secondary structure
and sequence conservation, see Figure 1 for a legend. In the
middle is an illustration of the covariance model score dis-
tributions over sequences derived from the PDB, sequences
from the RMfam seed alignments and shuffled PDB and RM-
fam counterparts. A curated “threshold”, for distinguishing
between true and false sequence matches is illustrated with
a dashed vertical line. The right figure contains four panels,
starting from the top-left and moving around the plot in a
clockwise direction, these are: ROC-curves for each of the 3
benchmarks described previously; ROC-like-curves, of PPV

http://github.com/ppgardne/RMfam


Supplementary results: Annotating RNA motifs in sequences and alignments — 3/39

vs Specificity; a bar plot illustrating the MCC, sensitivity
(SENS), specificity (SPEC), positive predictive value (PPV),
negative predictive value (NPV), accuracy (ACC) and the
false discovery rate (FDR), each of these was computed using
the threshold that maximises the MCC; The MCC shown as
a function of the covariance model bitscore (or sum of bit
scores in the alignment benchmark).
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Figure 1. A legend describing the symbols used in all the secondary structures images presented in figures 1-8. Secondary
structure diagrams of: tetraloops: ANYA [27, 28, 29], CUYG [30, 31, 32, 33], GNRA [34, 35, 36, 37, 38, 39], UMAC [40, 41]
and UNCG [38, 39, 42, 36] and the hairpins loops C-loop [17, 43, 44, 3], T-loop [38, 39, 45, 10, 46] and U-turn [38, 39, 7, 47].
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Figure 2. Secondary structure diagrams of: the hairpins loops; C-loop [17, 43, 44, 3], T-loop [38, 39, 45, 10, 46] and U-turn
[38, 39, 7, 47].
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Figure 3. Secondary structure diagrams of: internal loops: three k-turns [29, 43, 38, 39, 15, 48, 49] and two sarcin-ricin loops
[50, 51, 38, 3].
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Figure 4. Secondary structure diagrams of: internal loops: the tandem-GA [52, 3], twist up [17] and UAA GAN [53], the
docking elbow [19], right angle 2 and 3 [18] motifs.
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Figure 5. Secondary structure diagrams of Rho independent transcription terminators [54].
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Shine-Dalgarno sequence from Bacillus subtilis subsp. subtilis str. 168
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Shine-Dalgarno sequence from Escherichia coli str. K-12 substr. MG1655
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Shine-Dalgarno sequence from Helicobacter pylori 26695
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Figure 8. Secondary structure diagrams of: sequence motifs: Shine-Dalgarno sequences from Bacillus subtilis, Escherichia
coli and Helicobacter pylori respectively [79].
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Figure 11. AUF1 binding.
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Figure 12. C-loop.
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Figure 13. CRC binding.
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Figure 14. CsrA binding.
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Figure 15. CUYG.
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Figure 16. docking elbow.
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Figure 17. Domain-V.
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Figure 18. GNRA.
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Figure 19. k-turn-1.
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Figure 20. k-turn-2.
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Figure 21. pK-turn.
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Figure 22. RBS B subtilis.
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Figure 23. RBS E coli.
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Figure 24. RBS H pylori.
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Figure 25. HuR binding.
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Figure 26. right angle-2.
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Figure 27. right angle-3.
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Figure 28. Roquin binding.
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Figure 29. sarcin-ricin-1.
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Figure 30. sarcin-ricin-2.
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Figure 31. SRP S domain.
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Figure 32. tandem-GA.
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Figure 33. Terminator1.
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Figure 34. Terminator2.
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Figure 35. T-loop.
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Figure 36. TRIT.
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Figure 37. twist up.
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Figure 38. UAA GAN.
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Figure 39. UMAC.
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Figure 40. UNCG.
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Figure 41. U-turn.
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Figure 42. vapC target.
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Figure 43. VTS1 binding.
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Figure 44. A comparison of the Rfam 11.0 5S rRNA consensus structure and a corresponding manually corrected model. The
RMfam annotations identified a number of conserved motifs in the 5S rRNA model, using RMfam annotations as a guide.
These include the twist up motif [17], a sarcin-ricin motif [50] and a GNRA motif [34]. The sarcin-ricin loop appeared to be
mis-aligned in a number of cases in the Rfam alignment, the RMfam annotations allowed the alignment to be refined,
correcting the alignment of this conserved motif.
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0.1 Networks
We can now gain insights into the network of RNA motifs
and families. This reveals aspects of the evolutionary con-
straints on RNA structure as well as convergent evolution and
function. An example of an extreme evolutionary constraint
that we have observed is the GNRA tetraloop in the bacte-
rial A, B and archaeal RNase P RNA families. This loop
is located on the P9 helix of RNase P that appears to have
been conserved throughout the evolutionary span of bacte-
ria and archaea [4, 83]. The structurally diverse domains 1
- 4 for the group II introns families are also enriched with
GNRA-tetraloop hosting helices near the 5′ end of the re-
gion (See Figure 46), other than this loop there is little that is
conserved between these presumably homologous sequences
and structures. A striking example of convergent evolution
of analogous structures is the intrinsic bacterial transcription
terminators [84] (See Figure S4). These motifs are required
for the efficient termination of transcription [54]. We see that
these are frequently used by many bacterial small RNAs and
cis-regulatory elements such as 5′ leaders (See Figure 46), a
result that serves to validate the accuracy of our method as
well as illustrating the plasticity of transcription terminator
evolution.
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Figure 46. A network of the highest scoring 100 annotations of RMfam on Rfam. The nodes on the inner circle shows 8
RMfam motifs, the outer circle shows 64 Rfam families. The edges connecting the nodes indicate high-scoring predictions.
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