Table S1. Changes in the key proteins found deregulated in XRCC1 KD cells are reflecting changes found in cancer samples.
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Supplementary Table S1: Changes in the key proteins found deregulated in XRCC1 KD cells are reflecting changes found in cancer samples. 

	Highly deregulated pathways in DNA repair deficient cells (XRCC1 kd) that are correlated to carcinogenesis
	 Changed protein in XRCC1 KD cells
	Changes observed in cancer cells,
Involvement in cancer

	Tissue remodeling
Epithelial to mesenchymal transition 
Cellular invasion
Cell movement
	COL1A1    , COL1A2 , COL3A1 
	 e.g. (1,2), reviewed in (3,4)

	
	MMP2      
	 (5), and many more reviewed in (6)

	
	MYH11     
	(7)

	
	TIMP2      
	Activates MMP2, Reviewed in (6)

	
	ITGB5       
	 (8)

	
	HMOX1    
	 Reviewed in (9)

	
	FZD2         
	 (10,11)

	
	WNT5B    
	(12-14)

	
	DVL3         
	 (15,16) and others

	
	RHOG       
	 (17)

	
	FOSL1       
	 (18,19), reviewed in (20)

	
	NRP2        
	 Reviewed in (21)

	
	PALLD       
	 (22,23) and others

	
	ICAM1      
	 reviewed in (24)

	Serine biosynthesis
(One-carbon metabolism)
	PHGDH     
	 (25-29)

	
	PSAT1       
	 (25-29)

	
	PSPH         
	 (25-29)

	Tetrahydrofolate cycle
(One-carbon metabolism)
	MTHFD2  
	  (30-34)

	
	SHMT2      (<2-fold)
	 (30,32)

	Pentose phosphate pathway
(Nucleotide synthesis)
	G6PD         (<2-fold)
	(26) (35,36) and many more

	
	PRPS1       
	

	Amino acid metabolism
	SLC3A2     
	 (37) (38)

	
	SLC7A5     
	(39-41), reviewed in (42)

	
	SLC1A5     
	 (43,44) and many more, reviewed in (42)

	
	SLC7A11  
	 (45,46), reviewed in (42)
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