Useful links

BARD
https://bard.nih.gov 

Documentation
Video tutorials about BARD
https://github.com/broadinstitute/BARD/wiki/Video-Demonstrations 

How to get the most out of BARD
https://bard.nih.gov/BARD/about/howToGetTheMostFromBard 

Presentations and posters about BARD
https://bard.nih.gov/BARD/about/howToDocumentBard

The organizing Principles of BARD
https://bard.nih.gov/BARD/about/bardOrganizingPrinciples 

BARD hierarchy top level concept definitions
https://bard.nih.gov/BARD/element/showTopLevelHierarchyHelp

Source Code
BARD API Github source repository
https://github.com/ncats/bard

BARD Web Interface source repository
https://github.com/broadinstitute/BARD 

BARD Desktop Client source repository
https://bitbucket.org/ncgc/bard

Plugins
List of existing plugins
https://bard.nih.gov/BARD/about/howToUsePlugins 

Documentation for writing plugins
https://github.com/ncats/bard/wiki/Plugins


The BARD API

The BARD API is implemented in Java and provides a REST interface to the BARD data warehouse. The API is implemented using Java servlets and is deployed in one or more J2EE compliant containers. The REST interface employs the Jersey (https://jersey.java.net/) library to provide the requisite scaffolding and routing mechanisms. Jackson (http://jackson.codehaus.org/) is employed to support processing of JSON documents, which are the primary response format for the bulk of the API.

[bookmark: _GoBack]The API provides eleven top-level resources that correspond to all the main entities (projects, assays, experiments and so on) that represent the BARD datasets. These top-level resource include a number of subresources, and in true REST spirit, one is able to navigate these resources in an automated fashion starting from the root resource (http://bard.nih.gov/api/v17.3/). The API is versioned, using a version number in the URL and multiple versions (stable and one or more development instances) of the BARD API are available at any given time. The API is fully documented at https://github.com/ncats/bard/wiki, which includes a number of developer notes on specific aspects of the API such as search syntax and plugin development.

In addition to entity specific resources, the API provides a number of generic resources such as search, ETag support and metadata for individual resources and so on. The API employs caching extensively. In addition to system level database caches, the API itself maintains resource level caches. Web caching is enabled by use of ETags and the If-None-Match header. The API also uses the ETag mechanism to support (short term) persistent references to collections of individual entities. Since the mechanism supports recursive references, this allows clients to build up complex collections of multiple entities and easily retrieve them using a single call. Search functionality is enabled by the Solr full-text indexing engine (http://lucene.apache.org/solr/). The search resources support the Solr query syntax allowing complex queries to be constructed. Metadata resources enable discovery of subresources (paths, query arguments and their types and available HTTP methods; see http://bard.nih.gov/api/latest/assays/_info for an example) and elucidation of response formats via JSON schema (such as http://bard.nih.gov/api/latest/assays/_schema).

All API responses are in JSON format, though, where relevant, such as when retrieving chemical structures, the response format can be configured using the Accepts header. An important feature of API responses is a configurable level of detail. Thus by default, the API JSON response might simply include an entity’s unique ID and a short text description. By specifying “expand=true” as a query parameter in the request one can retrieve a much more detailed response that may include references to other entities. This design allows the client to trade off detail for speed and can be useful for mobile applications.

API – based Plugins
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Finally, the API is extensible, in that user contributed code, termed a plugin, can be deployed within the BARD architecture and then presented as a seamless part of the API hierarchy. Plugins are essentially Java servlets packaged as WAR files. Importantly, by virtue of being deployed within the BARD infrastructure, a plugin has direct access to the data warehouse. There are certain extra requirements such as a manifest describing available resources, provision for some standard REST resources and so on that are described in the BARD Plugin Specification Document (https://github.com/ncats/bard/wiki/Plugins). The BARD distribution provides a validation tool that can be used to ensure that a plugin adheres to the BARD specifications. Since the BARD infrastructure can host arbitrary plugins, the API implements a plugin registry that allows a client to discover available plugins and their locations. The registry is located at http://bard.nih.gov/api/latest/plugins/registry/list and provides a JSON representation of the metadata for each plugin that is available, including the path to the actual plugin resource where more detailed metadata is available.

API structure
Though the API provides a single unified interface to various resources and functionality, it is not deployed as a single monolithic component. Instead, different functionality is hosted in distinct containers, which can be located on physically different hosts. BARD employs an Nginx proxy to hide these details and route incoming requests to the appropriate locations. Thus, the core API provide access to the top level resources is hosted on a Glassfish cluster employing a round robin scheme to distribute incoming requests to individual cluster nodes. While the core API hosts the search resources, the actual search functionality is implemented using Solr that in the current deployment is hosted in a Tomcat container, on a physically distinct server. A configuration variable allows us to point the API to the appropriate internal server. Finally the plugins that extend the API are hosted on yet another Tomcat container on a physically distinct server. While all components could be located on a single server in a single application container, the current design leads to a significantly more robust system. Thus full text-indexing performance and lookup is not affected by a surge of incoming requests. Similarly, hosting the plugins in a separate container ensures that a user plugin that misbehaves (such as leaking memory) does not bring down the entire BARD API. 


