Supplementary Data Supplementary figures 1-6 and figure legends, and Supplementary tables 1-2

MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions

Norma Keogh¹, Kara Chan², Guo-Min Li^{2,3} and Robert S. Lahue^{1,4,*}

¹Centre for Chromosome Biology and ⁴NCBES Galway Neuroscience Centre

National University of Ireland Galway

Newcastle Road

Galway, Ireland

H91TK33

²Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536

³Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center,

University of Southern California Keck School of Medicine, Los Angeles, CA 90033

*corresponding author

Legends to supplementary figures

Supplementary Figure 1. Schematic showing overview of shuttle vector assay and details of shuttle vectors used for measuring expansions and contractions. (A) Workflow of shuttle vector assay. SVG-A cells are seeded at 4.0×10^5 cells and transfected with the appropriate shuttle vector. The plasmid is harvested and purified after 48 hours, then transformed into *S. cerevisiae* as a biosensor. Yeast cells are plated onto SC-histidine plates for total transformants for both assays and onto SC-his-uracil plates for genetic selection for contraction assays. Replica plating onto canavanine plates (100 µg/ml) is required for genetic selection for genetic selection for expansion assay only. Colony counts and PCR confirmation are required to

calculate expansion/contraction frequency. (B) Schematic showing pBL302 reporter plasmid system used to measure CTG expansions. Expansion of \geq 4 CTG repeats causes out of frame translation of the *CAN1* gene and confers canavanine resistance. In these studies, expansion of + 12 repeats was the largest expansion observed. (C) Reporter plasmid pBL247 is used to measure CTG contractions for the contraction assay. Contraction of CTG repeats from 33 repeats to \leq 28 repeats causes an Ura⁺ phenotype, which allows genetic selection of contractions. A maximum contraction size of -30 CTG repeats was observed in these studies.

Supplementary Figure 2. Immunoblot analysis of *Msh3* variant cell lines with Msh3 C-terminal antibody, Abcam Ab154521, raised against amino acid positions 916-1137 of Msh3. (A) Immunoblot showing Msh3 protein expression in $Msh3^{+/+}$ and Msh3 variant cell lines. No detectable Msh3 expression in $Msh3^{-/-}$ cell line, confirming knockout of Msh3. Second band, marked with *, is non-specific as noted by the manufacturer. (B) Schematic showing CRISPR/Cas9 target region and immunogen regions of both Msh3 antibodies used in screening cell lines.

Supplementary Figure 3. Growth curve analysis of $Msh3^{-/-}$, $Msh3^{+/+}$ and $Msh3^{1.7X}$ cell lines, showing no detectable difference in cell growth. Error bars denote ±SEM, n=3.

Supplementary Figure 4. Estimation of MutSβ abundance as fraction of overall MutS complexes in SVG-A cells. (A) Overview of experimental approach and calculation of Msh3/Msh2 capture efficiencies and MutSβ abundance. FT stands for Flow-through. (B) Representative immunoblot of co-immunoprecipitated Msh3 and Msh2 showing IP input and IP flow-through from wild type SVG-A cells. In this example there was 11% of total Msh3 in flow-through, correspondingly the capture efficiency was calculated at 84%. For Msh2, 78%

2

was measured in flow-through, indicating that 22% of Msh2 protein was captured by the anti-Msh3 antibody. MutS β abundance is calculated using the formula (22/84)*100% to give a value of 27%. (C) Quantitative data of Msh3 and Msh2 capture efficiencies from co-IP data, average values shown ±SEM, *n*=4.

Supplementary Figure 5. Characterisation of $Msh3^{E9764}$ Walker B mutant cell line, in comparison to $Msh3^{+/+}$ cell line. (A) Growth curve analysis of $Msh3^{E9764}$ cells in comparison to $Msh3^{+/+}$ showing no detectable defect in cell growth. n=3. (B) Quantitative analysis of immunoprecipitated Msh3 and Msh2 protein abundance normalised to protein input and relative to $Msh3^{+/+}$ cells. A partial defect in MutS β complex formation is observed in $Msh3^{E9764}$ cell lines. n=3, *P=0.023 for Msh3 and $P=1.5x10^{-4}$ for Msh2. For both panels, error bars denote ±SEM.

Supplementary Figure 6. Characterisation of Msh3 polymorphic cell lines in comparison to $Msh3^{+/+}$ wild type cells. (**A**) Quantitative analysis of Msh protein expression normalised to actin and relative to $Msh3^{+/+}$ cell line. $Msh3^{T363I}$ add-back cell line has an average Msh3 expression level 75% that of wild type expression, while the value for $Msh3^{T363I}$ add-back cell was 71% of control. n=7 for Msh3 wild-type or n=4 for polymorphic Msh3 proteins; n=3-4 for Msh2 and Msh6 protein levels in all cell lines. *P = 0.035 compared to Msh2 level in $Msh3^{+/+}$ cells; and **P=0.0085, both compared to Msh6 level in $Msh3^{+/+}$ cells. (**B**) Quantitative analysis of immunoprecipitated Msh3 and Msh2 protein abundance normalised to protein input and relative to $Msh3^{+/+}$ cells. A decrease in immunoprecipitated Msh2 protein levels in observed in $Msh3^{T363I}$ cells; n=3, *P=0.004; and in immunoprecipitated Msh2

3

 $Msh3^{T3631}$ and $Msh3^{T1045A}$ cell lines in comparison to $Msh3^{+/+}$ cells, showing no detectable difference in cell growth, n=3. For all panels, error bars denote ±SEM.

Supplementary Table 1. Mutagenic primers were designed using NEBasechanger program (New England Biolabs). Primers were used in pairs to perform site-directed mutagenesis using the Q5 site-directed mutagenesis kit (New England Biolabs) to create Msh3 ATPase and polymorphic variant cell lines. Mutagenic nucleotides are shown in bold and underline.

Supplementary Table 2. Values of *n* and *P* for all figures.

В

Deletion in *Msh3*-/- Δa

∆aa 116-118

Antibody	<u>Immunoaen</u>	
BD Msh3 611390	Human Msh3 aa. 136-349	
Abcam Msh3 Ab154521	Human Msh3 aa. 916-1137	

Figure S3

Estimation of MutS β abundance A . Measure Msh3 capture efficiency Msh3_{FT}/Actin_{FT} $1 - \left(\begin{array}{c} \frac{Msh3_{FT}/Actin_{FT}}{Msh3_{Input}/Actin_{Input}} \right)$ * 100% Measure Msh2 capture efficiency • $1 - \left(\begin{array}{c} \frac{\text{Msh2}_{\text{FT}}/\text{Actin}_{\text{FT}}}{\text{Msh2}_{\text{Input}}/\text{Actin}_{\text{Input}}}\right) * 100\%$ MutSβ abundance = Msh2 capture efficiency/ • Msh3 capture efficiency IP Flow-through В IP Input Msh3 Msh2 Actin

С

Protein	Capture efficiency	SEM	n
Msh3	84%	11%	4
Msh2	22%	6%	4
MutSβ			
abundance	26%	6%	4

Α

В

Α

□Msh3 ■Msh2

С

Supplementary Table 1

Msh3 variant Forward primer		Reverse primer	
E975A	CTAGGAAGAGGGACGAGCACTCATG	GGC ATCCAAGATAACCAAGGACTGTGATG	
T363I	ATGACTGAT ATT TCTACCAGCTATC	TATCTCATCAACATTTACAGC	
T1045A	GAACAAGTCCCTGATTTTGTCACCTTC	TGC <u>GGC</u> GCCTGGATCCAGTTTGCTTTC	

Supplementary Table 2

n and P values

Figure	Entry	Comparator	n	P value
1C	Msh3 abundance in Msh3-/- cells	Msh3 abundance in Msh3+/+ cells	9	2.23E-20
1C	Msh2 abundance in Msh3-/- cells	Msh2 abundance in Msh3+/+ cells	6	0.135
1C	Msh6 abundance in Msh3-/- cells	Msh6 abundance in Msh3+/+ cells	6	0.058
1E	Expansion frequency in Msh3-/- cells	Expansion frequency in Msh3+/+ cells	3 - 4	0.0019
1F	Contraction frequency in Msh3-/- cells	Contraction frequency in Msh3+/+ cells	3	0.3
· · · · · · · · · · · · · · · · · · ·				
2B	Msh3 abundance in Msh3 1.7x cells	Msh3 abundance in Msh3+/+ cells	9	1.87E-06
2B	Msh2 abundance in Msh3 1.7x cells	Msh2 abundance in Msh3+/+ cells	5 - 7	0.082
2В	Msh6 abundance in Msh3 1.7x cells	Msh6 abundance in Msh3+/+ cells	5 - 7	0.032
2C	Expansion frequency in Msh3 1.7x cells	Expansion frequency in Msh3+/+ cells	3	0.163
2D	Contraction frequency in Msh3 1.7x cells	Contraction frequency in Msh3+/+ cells	3	0.209
2D	Contraction frequency in Msh3 2.9x cells	Contraction frequency in Msh3+/+ cells	3	0.290
2F	IP Msh3 abundance from Msh3-/- cells	IP Msh3 abundance from Msh3+/+ cells	4	5.44E-13
2F	IP Msh2 abundance from Msh3-/- cells	IP Msh2 abundance from Msh3+/+ cells	4	4.30E-11
2F	IP Msh3 abundance from Msh3 2.9x cells	IP Msh3 abundance from Msh3+/+ cells	4	1.66E-04
2F	IP Msh2 abundance from Msh3 2.9x cells	IP Msh2 abundance from Msh3+/+ cells	4	4.96E-03
3D	Expansion frequency in Msh3 E975A cells	Expansion frequency in Msh3+/+ cells	3	0.037
ЗE	Contraction frequency in Msh3 E975A cells	Contraction frequency in Msh3+/+ cells	4 - 5	0.065
3G	Msh3E976A minus DNA	MutS β minus DNA	3	0.028

Supplementary Table 2 continued

	ATPase activity MutSβ-	ATPase activity wild type	2	0.001
3G	Msh3E976A plus DNA	MutSβ plus DNA	5	0.001

Supplementary Table 2 continued

4D	Expansion frequency in Msh3 T363I cells	Expansion frequency in Msh3+/+ cells	3	0.300
4D	Expansion frequency in Msh3 T1045A cells	Expansion frequency in Msh3+/+ cells	3	0.289
Supp 5B	IP Msh3 abundance from Msh3 E975A cells	IP Msh3 abundance from Msh3 +/+ cells	3	0.023
Supp 5B	IP Msh2 abundance from Msh3 E975A cells	IP Msh2 abundance from Msh3+/+ cells	3	1.50E-04
Supp 6A	Msh3 T363I abundance	Msh3 wild type abundance	4 - 7	0.17
Supp 6A	Msh3 T1045A abundance	Msh3 wild type abundance	4 - 7	0.10
Supp 6A	Msh2 abundance from Msh3 T363I cells	Msh2 abundance from Msh3 +/+ cells	3 - 4	0.035
Supp 6A	Msh2 abundance from Msh3 T1045A cells	Msh2 abundance from Msh3 +/+ cells	3 - 4	0.13
Supp 6A	Msh6 abundance from Msh3 T363I cells	Msh6 abundance from Msh3 +/+ cells	3 - 4	0.0085
Supp 6A	Msh6 abundance from Msh3 T1045A cells	Msh6 abundance from Msh3 +/+ cells	3 - 4	0.075
Supp 6B	IP Msh3 abundance from Msh3 T363I cells	IP Msh3 abundance from Msh3 +/+ cells	3	0.38
Supp 6B	IP Msh3 abundance from Msh3 T1045A cells	IP Msh3 abundance from Msh3 +/+ cells	3	0.41
Supp 6B	IP Msh2 abundance from Msh3 T363I cells	IP Msh2 abundance from Msh3 +/+ cells	3	0.004
Supp 6B	IP Msh2 abundance from Msh3 T1045A cells	IP Msh2 abundance from Msh3 +/+ cells	3	0.005