Supplementary Data

A "new lease of life": FnCpf1 possesses DNA cleavage activity for genome editing in human cells

Mengjun Tu 1, Li Lin ${ }^{1}$, Yilu Cheng ${ }^{2}$, Xiubin He^{1}, Huihui Sun ${ }^{1}$, Haihua Xie 1, Junhao Fu^{1}, Changbao Liu ${ }^{2}$, Jin Lii${ }^{1}$, Ding Chen ${ }^{1}$, Haitao Xi^{2}, Dongyu Xue^{3}, Qi Liu 3, Junzhao Zhao ${ }^{2}$, Caixia Gao ${ }^{4}$, Zongming Song ${ }^{1}$, Jia Qu^{1} and Feng Gu ${ }^{1, *}$
${ }^{1}$ School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027 China
${ }^{2}$ The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000 China
${ }^{3}$ Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072 China. ${ }^{4}$ Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101 China.

[^0]
Supplementary Data

Table of Contents

1, Supplementary Figures
Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6
Supplementary Figure 7
Supplementary Figure 8
Supplementary Figure 9
Supplementary Figure 10

2, Supplementary tables
Supplementary Table 1
Supplementary Table 2
Supplementary Table 3
Supplementary Table 4

Figure S1.Schematic representation of three crRNA structures.
The difference among these three Cpf1 (AsCpf1, LbCpf1 and FnCpf1) family members is shown in red.

Figure S2.The effects of plasmids amount for the cleavage.
The cells were co-transfected with different amounts of expression plasmids for FnCpf1 and crRNA. The cleavage was saturated with 750 ng and 250 ng plasmids coding for FnCpf and crRNA, respectively. Error bars, s.e.m.; n=3. ** $\mathrm{P}<0.01$.

Figure S3.The cleavage efficiency of different Cpf1 with three different direct repeats.

The cleavage was the highest under the condition of each Cpf1 ortholog (FnCpf1, AsCpf1 and LbCpf1) with its own direct repeat.

Figure S4. Gene-editing efficiency at DNMT1 and EMX1 loci DNA cleavage has been observed at DNMT1-1 and DNMT1-3 with FnCpf1, respectively. No activity has been detected at EMX1-2 with FnCpf1, AsCpf1 and LbCpf1.Bands marker with red arrow is the cleavage bands.

Figure S5. DNA sequencing chromatograms of DNMT1-1, RS1 and NRL loci.
(a)DNA sequencing chromatograms of the fragment with PCR templates from the cells transfected with FnCpf1 has additional peaks, compared with that of no transfection. (b,c,d) DNA sequence analysis of single individual clone with indel.

Figure S6. FnCpf1 mediated gene-editing at multiple human genomic loci.

FnCpf1 has the activity at HBB, CCR5, EMX1, VEGFA, and GRIN2b. We observed different activities with the different crRNA targeting the same gene.

Figure S7.The effects of U length and direct repeats on FnCpf1-mediated gene editing in human cells
(a, b)With different U length of crRNA, no significant difference has been observed. (c,d) Direct repeats from Lb2Cpf1, Pc/PmCpf1 had the same DNA cleavage efficiency as direct repeats from FnCpf1 when they were used with FnCpf1. Error bars, s.e.m.; n=3. **P < 0.01. NS: not significant.
a
b

C
d VEGFA-2
$1090=\square$
$500=\square$
$250=\square$
$100=$
$1090=\square$
$500=\square$
$250=\square$
$100=$
2000
2000
$1000=$
$758=\square$
$500=$
$250=$
$100=$
$1000=$
$758=\square$
$500=$
$250=$
$100=$
e

Figure S8.Off-target effects of FnCpf1-mediated gene editing in human cells
The off-target sites were predicted with online software
(http://www.rgenome.net/cas-offinder/). Off-targets of five target sequence at different genes were investigated. The results showed that there are detectable off-target effects of FnCpf1 at endogenous genes (HBB, Off-target 6; CCR5, Off-target 8; EMX1, Off-target 6).

Figure S9.The activities of the pre-crRNA and the mature crRNA.
(a) Schematic representation of pre-crRNA (U+) and mature crRNA (U-) structures. The difference between these two crRNAs is shown in red. (b) Effects of pre-crRNA and mature crRNA on the ability to induce indels at three GFP targets. The results show no difference between two groups ($P>0.05$). Error bars, s.e.m.; n = 3. Significance was calculated using Student's t-test.

Figure S10. Effects of fourth position of the FnCpf1 PAM for the cleavage (a, b) Schematic representation and target/PAM information of loxP-STOP-loxP-mG/FnCpf1. After the FnCpf1 mediated DNA double strands break via targeting loxP flanking STOP-cassette, the expression of the EGFP gene would be directly driven by the CAG promoter. (c) Illustration of protocol used for loxP-STOP-loxP/FnCpf1. (d,e) Co-transfection of 250 ng plasmids coding for FnCpf1 and 100 ng plasmids coding for crRNA target loxP (labeled these two plasmids as FnCpf1-eloxP) plus different amount of plasmid harboring loxP-STOP-loxP-mG fragment (labeled as pLSL-mG) per well in a 12-well plate. With the increase of the pLSL-mG, more cells in green have been observed. G and T at fourth position of PAM have higher cleavage efficiency, compared with A and C.

Supplementary Table 1. Different crRNA sequences with Cpf1orthologs.
Primer Description \quad Primer sequence (5`-3`)

AsCpf1 cRNA with TTTN PAM	CAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAAGAGTAGAAATTCGGTG
AsCpf1 crRNA with GCTN PAM	CAAAAAACGTGCTGCTTCATGTGGTCGGGGATCTACAAGAGTAGAAATTCGGTG
AsCpf1 crRNA with CATN PAM	CAAAAAATGCTTCAGCCGCTACCCCGACCAATCTACAAGAGTAGAAATTCGGTG
LbCpf1 crRNA with TTTN PAM	CAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACACTTAGTAGAAATTCGGTG
LbCpf1 crRNA with GCTN PAM	CAAAAAACGTGCTGCTTCATGTGGTCGGGGATCTACACTTAGTAGAAATTCGGTG
LbCpf1 crRNA with CATN PAM	CAAAAAATGCTTCAGCCGCTACCCCGACCAATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at DNMT1-1	CAAAAAAAGCTGCAGAACATTTCTGTCACTATCTACAACAGTAGAAATTCGGTG
AsCpf1 crRNA at DNMT1-1	CAAAAAAAGCTGCAGAACATTTCTGTCACTATCTACAAGAGTAGAAATTCGGTG
LbCpf1 crRNA at DNMT1-1	CAAAAAAAGCTGCAGAACATTTCTGTCACTATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at RS1	CAAAAAAGCTCTCGAGGGGATGCCAGCATCATCTACAACAGTAGAAATTCGGTG
AsCpf1 crRNA at RS1	CAAAAAAGCTCTCGAGGGGATGCCAGCATCATCTACAAGAGTAGAAATTCGGTG
LbCpf1 crRNA at RS1	CAAAAAAGCTCTCGAGGGGATGCCAGCATCATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at NRL	CAAAAAACCCTGCAGCCTGCACTTCCTTGGATCTACAACAGTAGAAATTCGGTG
AsCpf1 crRNA at NRL	CAAAAAACCCTGCAGCCTGCACTTCCTTGGATCTACAAGAGTAGAAATTCGGTG
LbCpf1 crRNA at NRL	CAAAAAACCCTGCAGCCTGCACTTCCTTGGATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at DNMT1-3	CAAAAAAGAGTAACAGACATGGACCATCAGATCTACAACAGTAGAAATTACGGTG
AsCpf1 crRNA at DNMT1-3	CAAAAAAGAGTAACAGACATGGACCATCAGATCTACAAGAGTAGAAATTACGGTG
LbCpf1 crRNA at DNMT1-3	CAAAAAAGAGTAACAGACATGGACCATCAGATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at EMX1-2	CAAAAAAGGTGTGGTTCCAGAACCGGAGGAATCTACAACAGTAGAAATTACGGTG
AsCpf1 crRNA at EMX1-2	CAAAAAAGGTGTGGTTCCAGAACCGGAGGAATCTACAAGAGTAGAAATTACGGTG
LbCpf1 crRNA at EMX1-2	CAAAAAAGGTGTGGTTCCAGAACCGGAGGAATCTACACTTAGTAGAAATTCGGTG
FnCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTACGGTG
Lb3Cpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGGCATGAGAACCATGCTTTCTCGGTG
BpCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGACCTAATTACTAGGTAATTTTCGGTG
PeCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAAAGTAGAAATCCCGGTG
PbCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAAAGTAGAAATTTCGGTG
SsCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGGTCGCGCCCCGCGTGGGCGCGCGGTG
AsCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAGAGTAGAAATTACGGTG
Lb2Cpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAATAGTAGAAATTCCGGTG
CMtCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAAGAGTAGAGATTCCGGTG
EeCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAAGTAGAAATTACGGTG
MbCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAACAGTAGAAATTTCGGTG
LiCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAAAAGTAGAAATTCCGGTG
LbCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACACTTAGTAGAAATTACGGTG
PcCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAATAGTAGAAATTACGGTG
PdCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACCGAAGTAGAAATTACGGTG
PmCpf1 crRNA at GFP site 1	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAATAGTAGAAATTACGGTG
FnCpf1 crRNA at GFP site 2	CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
AsCpf1 crRNA at GFP site 2	CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAAGAGTAGAAATTACGGTG
Lb2Cpf1 crRNA at GFP site 2	CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAATAGTAGAAATTCGGTG

MbCpf1 crRNA at GFP site 2 LbCpf1 crRNA at GFP site 2 PcCpf1 crRNA at GFP site 2 FnCpf1 crRNA at GFP site 3 AsCpf1 crRNA at GFP site 3 Lb2Cpf1 crRNA at GFP site 3 MbCpf1 crRNA at GFP site 3 LbCpf1 crRNA at GFP site 3 PcCpf1 crRNA at GFP site 3 FnCpf1 crRNA at HBB-1 FnCpf1 crRNA at HBB-2 FnCpf1 crRNA at HBB-3 FnCpf1 crRNA at HBB-4 FnCpf1 crRNA at CCR5-1 FnCpf1 crRNA at CCR5-2 FnCpf1 crRNA at CCR5-3 FnCpf1 crRNA at CCR5-4 FnCpf1 crRNA at EMX1-1 FnCpf1 crRNA at EMX1-3 FnCpf1 crRNA at VEGFA-1 FnCpf1 crRNA at VEGFA-2 FnCpf1 crRNA at VEGFA-3 FnCpf1 crRNA at VEGFA-4 FnCpf1 crRNA at GRIN2b-1 FnCpf1 crRNA at GRIN2b-3 FnCpf1 crRNA at GRIN2b-4 FnCpf1 crRNA at eloxP1 FnCpf1 crRNA at eloxP2

CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAAACAGTAGAAATTCGGTG CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACACTTAGTAGAAATTCGGTG CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAATAGTAGAAATTACGGTG CAAAAAACATGTGGTCGGGGTAGCGGCTATCTACAACAGTAGAAATTCGGTG

CAAAAAACATGTGGTCGGGGTAGCGGCTATCTACAAGAGTAGAAATTACGGTG CAAAAAACATGTGGTCGGGGTAGCGGCTATCTACAATAGTAGAAATTCGGTG CAAAAAACATGTGGTCGGGGTAGCGGCTATCTACAAACAGTAGAAATTCGGTG CAAAAAACATGTGGTCGGGGTAGCGGCTATCTACACTTAGTAGAAATTCGGTG CAAAAAA CATGTGGTCGGGGTAGCGGCT ATCTACAATAGTAGAAATTACGGTG CAAAAAATATCATGCCTCTTTGCACCATTCATCTACAACAGTAGAAATTCGGTG CAAAAAATTGTATCATTATTGCCCTGAAAGATCTACAACAGTAGAAATTCGGTG CAAAAAATTTCTTTCAGGGCAATAATGATAATCTACAACAGTAGAAATTCGGTG CAAAAAAGATATTGCTATTGCCTTAACCCAATCTACAACAGTAGAAATTCGGTG CAAAAAACAGCCCAGGCTGTGTATGAAAACATCTACAACAGTAGAAATTCGGTG CAAAAAACTGCTCCCCAGTGGATCGGGTGTATCTACAACAGTAGAAATTCGGTG CAAAAAATCTGTGGGCTTGTGACACGGACTATCTACAACAGTAGAAATTCGGTG CAAAAAATTGACAAACTCTCCCTTCACTCCATCTACAACAGTAGAAATTCGGTG CAAAAAAGGTGTGGTTCCAGAACCGGAGGAATCTACAACAGTAGAAATTCGGTG CAAAAAATTGTACTTTGTCCTCCGGTTCTGATCTACAACAGTAGAAATTCGGTG CAAAAAACGTCTGCACACCCCGGCTCTGGCATCTACAACAGTAGAAATTCGGTG CAAAAAAGGACCCCCTATTTCTGACCTCCCATCTACAACAGTAGAAATTCGGTG CAAAAAATGTACATGAAGCAACTCCAGTCCATCTACAACAGTAGAAATTCGGTG CAAAAAAGAGAGGGACACACAGATCTATTGATCTACAACAGTAGAAATTCGGTG CAAAAAAGTTAAAATAGGATCTACATCACGATCTACAACAGTAGAAATTCGGTG CAAAAAAGGCACTTCCGACGAGGTGGCCATATCTACAACAGTAGAAATTCGGTG CAAAAAACAATGAAAGGAGATAAGGTCCTTATCTACAACAGTAGAAATTCGGTG CAAAAAAAGCATACATTATACGAAGTTAATCTACAACAGTAGAAATTCGGTG CAAAAAAAATGTATGCTATACGAAGTTAATCTACAACAGTAGAAATTCGGTG

Supplementary Table 2. Different parameter of crRNA with FnCpf1.

Ind	Primer Description	ion Primer sequence (5`-3`)
ex		
crRNA spacer sequence 1		
1	\#14nt	CAAAAAAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
2	\#14nt 5A	CAAAAAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
3	\#14nt 7A	CAAAAAAAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
4	\#14nt 8A	CAAAAAAAAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
5	\#17nt	CAAAAAACGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
6	\#17nt 5A	CAAAAACGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
7	\#17nt 7A	CAAAAAAACGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
8	\#20nt	CAAAAAAGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
9	\#20nt 5A	CAAAAAGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
10	\#20nt 7A	CAAAAAAAGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
11	\#20nt 8A	CAAAAAAAAGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
12	\#17nt 8A	CAAAAAAAACGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
13	\#21nt	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
14	\#21nt 5A	CAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
15	\#21nt 7A	CAAAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
16	\#21nt 8A)	CAAAAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
17	\#22nt	CAAAAAACTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
18	\#22nt 5A	CAAAAACTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
19	\#22nt 7A	CAAAAAAACTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
20	\#22nt 8A	CAAAAAAAACTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
21	\#23nt 5A	CAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
22	\#23nt 7A	CAAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
23	\#23nt 8A	CAAAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
24	\#24nt	CAAAAAATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
25	\#24nt 5A	CAAAAAATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
26	\#24nt 7A	CAAAAAAAATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
27	\#24nt 8A	CAAAAAAAAATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
28	\#25nt	CAAAAAAATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
29	\#25nt 5A	CAAAAATGCCCATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
30	\#25nt 7A	CAAAAAAATGCCCATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
31	\#25nt 8A	CAAAAAAAATGCCCATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
32	\#30nt	CAAAAAATGCCCATCCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
33	\#30nt 5A	CAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
34	\#30nt 7A	CAAAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
35	\#30nt 8A	CAAAAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
crRNA spacer sequence 2		
36	\#14nt	CAAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
37	\#14nt 5A	CAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG

38	\#14nt 7A	CAAAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
39	\#14nt 8A	CAAAAAAAAAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
40	\#17nt	CAAAAAAACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
41	\#17nt 5A	CAAAAACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
42	\#17nt 7A	CAAAAAAACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
43	\#17nt 8A	CAAAAAAAACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
44	\#20nt	CAAAAAATTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
45	\#20nt 5A	CAAAAAATTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
46	\#20nt 7A	CAAAAAAAATTCACCAGGGTGTCGCССTCATCTACAACAGTAGAAATTCGGTG
47	\#20nt 8A	CAAAAAAAAATTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
48	\#21NT	CAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
49	\#21nt 5A	CAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
50	\#21nt 7A	CAAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
51	\#21nt 8A	CAAAAAAAAGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
52	\#22nt	CAAAAAAGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
53	\#22nt 5A	CAAAAAGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
54	\#22nt 7A	CAAAAAAAGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
55	\#22nt 8A	CAAAAAAAAGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
56	\#23nt 5A	CAAAAACGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
57	\#23nt 7A	CAAAAAAACGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
58	\#23nt 8A	CAAAAAAAACGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
59	\#24nt	CAAAAAAGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
60	\#24nt 5A	CAAAAAGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
61	\#24nt 7A	CAAAAAAAGCGGTTCACCAGGGTGTCGCССТСАTCTACAACAGTAGAAATTCGGTG
62	\#24nt 8A	CAAAAAAAAGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
63	\#25nt	CAAAAAATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
64	\#25nt 5A	CAAAAATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
65	\#25nt 7A	CAAAAAAATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
66	\#25nt 8A	CAAAAAAAATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGT G
67	\#30nt	CAAAAAACTCGATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTC
		GGTG
68	\#30nt 5A	CAAAAACTCGATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCG GTG
69	\#30nt 7A	CAAAAAAACTCGATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATT
		CGGTG
70	\#30nt 8A	CAAAAAAAACTCGATGCGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAAT TCGGTG
71	mature crRNA at GFP site 1	CAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
72	mature crRNA at GFP site 2	CAAAAAACGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTCGGTG
73	mature crRNA at GFP site 3	CAAAAAATTCATGTGGTCGGGGTAGCGGCTATCTACAACAGTAGAAATTCGGTG
74	pre-crRNA at GFP site 1	CAAAAAACCTGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTACGGTG
75	pre-crRNA at GFP site 2	CAAAAAACGGTTCACCAGGGTGTCGCCCTCATCTACAACAGTAGAAATTACGGTG
76	pre-crRNA at GFP site 3	CAAAAAATTCATGTGGTCGGGGTAGCGGCTATCTACAACAGTAGAAATTACGGTG

77	crRNA with TTA PAM	CAAAAAATGGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
78	crRNA with TAA PAM	CAAAAAAACACGCTGAACTTGTGGCCGTATCTACAACAGTAGAAATTCGGTG
79	crRNA with TCA PAM	CAAAAAAGCGATGCCACCTACGGCAAGCATCTACAACAGTAGAAATTCGGTG
80	crRNA with TGA PAM	CAAAAAATGAGCAAGGGCGAGGAGCTGTATCTACAACAGTAGAAATTCGGTG
81	crRNA with ATC PAM	CAAAAAACGGCATCAAGGTGAACTTCAAATCTACAACAGTAGAAATTCGGTG
82	crRNA with GTC PAM	CAAAAAAGTTTACGTCGCCGTCCAGCTCATCTACAACAGTAGAAATTCGGTG
83	crRNA with CTC PAM	CAAAAAAGGGGTGGTGCCCATCCTGGTCATCTACAACAGTAGAAATTCGGTG
84	crRNA with AAC PAM	CAAAAAACGGCGACGTAAACGGCCACAAATCTACAACAGTAGAAATTCGGTG
85	crRNA with AGC PAM	CAAAAAAGGTGAACAGCTCCTCGCCCTTATCTACAACAGTAGAAATTCGGTG
86	crRNA with ACC PAM	CAAAAAAGGTGGTGCAGATGAACTTCAGATCTACAACAGTAGAAATTCGGTG
87	crRNA with GAC PAM	CAAAAAACTTGTGGCCGTTTACGTCGCCATCTACAACAGTAGAAATTCGGTG
88	crRNA with GGC PAM	CAAAAAAGGAGCTGTTCACCGGGGTGGTATCTACAACAGTAGAAATTCGGTG
89	crRNA with GCC PAM	CAAAAAAGAGCTGGACGGCGACGTAAACATCTACAACAGTAGAAATTCGGTG
90	crRNA with CAC PAM	CAAAAAAGAGGAGCTGTTCACCGGGGTGATCTACAACAGTAGAAATTCGGTG
91	crRNA with CGC PAM	CAAAAAAGCCCGAAGGCTACGTCCAGGAATCTACAACAGTAGAAATTCGGTG
92	crRNA with CCC PAM	CAAAAAAGCCGTCCAGCTCGACCAGGATATCTACAACAGTAGAAATTCGGTG
93	crRNA with TTT PAM	CAAAAAAGGTCGAGCTGGACGGCGACGTATCTACAACAGTAGAAATTCGGTG
94	crRNA with TTG PAM	CAAAAAACATCTTCTTCAAGGACGACGGATCTACAACAGTAGAAATTCGGTG
95	crRNA with TTC PAM	CAAAAAACAGGATGGGCACCACCCCGGTATCTACAACAGTAGAAATTCGGTG
96	crRNA with CTA PAM	CAAAAAATGCTGCTTCATGTGGTCGGGGATCTACAACAGTAGAAATTCGGTG
97	crRNA with CTT PAM	CAAAAAAGAGGGCGATGCCACCTACGGCATCTACAACAGTAGAAATTCGGTG
98	crRNA with CTG PAM	CAAAAAAGTGGCCGTTTACGTCGCCGTCATCTACAACAGTAGAAATTCGGTG
99	mismatch crRNA	CAAAAAATGGTCGAGCTGGACGGCGACAATCTACAACAGTAGAAATTCGGTG
	spacer 21nt (C1U)	
100	mismatch crRNA spacer 21nt (G5A)	CAAAAAATGGTCGAGCTGGACGGTGACGATCTACAACAGTAGAAATTCGGTG
101	mismatch crRNA	CAAAAAATGGTCGAGCTGAACGGCGACGATCTACAACAGTAGAAATTCGGTG
	spacer 21nt (C10U)	
102	mismatch crRNA spacer 21nt (U15C)	CAAAAAATGGTCGGGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
103	mismatch crRNA	CAAAAAATAGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
	spacer 21nt (C20U)	
104	mismatch crRNA spacer 23nt (C1U)	CAAAAAACCTGGTCGAGCTGGACGGCGACAATCTACAACAGTAGAAATTCGGTG
105	mismatch crRNA	CAAAAAACCTGGTCGAGCTGGACGGTGACGATCTACAACAGTAGAAATTCGGTG
	spacer 23nt (G5A)	
106	mismatch crRNA spacer 23nt (C10U)	CAAAAAACCTGGTCGAGCTGAACGGCGACGATCTACAACAGTAGAAATTCGGTG
107	mismatch crRNA	CAAAAAACCTGGTCGGGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
	spacer 23nt (U15C)	
108	mismatch crRNA spacer 23nt (C20U)	CAAAAAACCTAGTCGAGCTGGACGGCGACGATCTACAACAGTAGAAATTCGGTG
109	Upstream loxp-GTTA	GACTAGTCGTTATAACTTCGTATAATGTATGC
110	Upstream loxp-ATTA	GACTAGTCATTATAACTTCGTATAATGTATGC

111	Upstream loxp-TTTA	GACTAGTCTTTATAACTTCGTATAATGTATGC
112	Upstream loxp-CTTA	GACTAGTCCTTATAACTTCGTATAATGTATGC
113	pLSL1 Downstream	GGAATTCGTTATAACTTCGTATAGCATACAT
114	loxp-GTTA pLSL1 Downstream loxp-ATTA	GGAATTCATTATAACTTCGTATAGCATACAT
115	pLSL1 Downstream	GGAATTCTTTATAACTTCGTATAGCATACAT
116	loxp-TTTA pLSL1 Downstream loxp-CTTA	GGAATTCCTTATAACTTCGTATAGCATACAT
117	Plsl2 first Downstream	GCATACATTATACGAAGTTATAACATTAAGGGTTCCG
	loxp-GTTA	
118	pLSL2 first	GCATACATTATACGAAGTTATAATATTAAGGGTTCCG
	Downstream loxp-ATTA	
119	pLSL2 first	GCATACATTATACGAAGTTATAAAATTAAGGGTTCCG
	Downstream loxp-TTTA	
120	pLSL2 first	GCATACATTATACGAAGTTATAAGATTAAGGGTTCCG
	Downstream loxp-CTTA	
121	pLSL2 second	GGAATTCATAACTTCGTATAGCATACATT
	Downstream universal	
	primer	

Supplementary Table 3.Potential off-target sites of four genes.

Gene	Chrom.	Positi on	Target Sequence (5'-3')	Mismatch	Target Primers $\left(5^{\prime}-3^{\prime}\right)$
HBB	Chr11	5225953	TTAGAATGGTGCAAAGAGGCATGA	0	F:GTGTGGAAGTCTCAGGATCGT
					R:AGGAGCTGTGGGAGGAAGAT
OTS-1	chr8	10253144	CTCGAATGGTaaAAAGAGGCATtt	4	F:GCTTCTGCAAATTGGCTTCC
					R:CCTGTTCCTCAGCAGTGATTTA
OTS-2	chr8	69030676	ITTGAATGGTGCcAAGAGItAaGA	4	F:GGTGGTCAGCTAATTATGTGGTA
					R:CAGGCCTCTGGCATTAAAGA
OTS-3	chr12	25113068	CTGGAATGGTGCAggGAaGCctGA	4	F:CTTGGGTGTTTCAATCGTCATATT
					R:ACAGAGATAGCCTGGAATTCATC
OTS-4	chr3	69071019	TTGGAATGGaaCAAAGAGGgATGg	4	F:CAGTAACAGATGCAAACTTCCTAA
					R:CCTCCAGTTGATGTCAGAAGAG
OTS-5	chr7	127142965	TTGGAgTGGTGgAAAGAtGCATGg	4	F:GGACAGCGAGACAGATTGATT
					R:GCAATGATGGGCTtATGCtTATAC

OTS-6	chr13	31718471	tTAGAATGatGCAAAAAGGCATat	4	F:GTGCCTTCTTCCCAGACATAG
					R:AGTGACGAAAGGAAAGGATGAG
OTS-7	chr14	86891761	Cttgatgatgganagatgcataa	4	F:CTGGAGGTGTCTTCACATCATAG
					R:CCCTGCACAACTCCTTATCTAC
OTS-8	chr9	123514207	CTTGAATGGTGCAATGAGGaATGC	3	F:GGGCAAGGTAGGGTTCTATTT
					R:GACCCACGATAGGCACTTTAT
CCR5	chr3	46374225	ttcgeagtganggeagagtttatc	0	F:TGCtGCATCAACCCCATCAT
					R:CACAAGTCTCTCGCCtGgtt
OTS-1	chr8	110258614	TTAGGAGTGgAGGGAGAGTgTGaC	3	F:GAGTTGTGAGGACCATGAGAAA
					R:GAGACAGATTAATTTAAGGCCTTT
OTS-2	chr2	42804972	CTTGGAGgGgAGGGAGAGTTTGTt	3	F:CAGGAtTCAGACACACCAGTAG
					R:ATCCTCCAAACAGGGACATTT
OTS-3	chr15	63193438	TTTGGAGTGAAAGGcGAGTTgGTC	3	F:GCCCAGGAGTTCAAGGTTATTA
					R:ATGCATCCATTTCCCAGAGG
OTS-4	chr6	152746891	TTTGGAGTtAAGGGAGAagTTGTC	3	F:TGTGTGTTCCTGTGATTTCTCT
					R:CTCCTGtttGgcagatattianga
					T
OTS-5	chr8	109541705	CTGGGAGTGAACGcAGAGTTTccC	4	F:TTGGTGATCTAGAGGGCATTTC
					R:TCCAGTGACTCCATTCAAACC
OTS-6	chr12	41601281	CTGGGAGTGAtGGGAGAcattGac	4	F:AGGATGATTCAAGCCCATTACA
					R:GAAACGGATTTACCCTCCTACC
OTS-7	chr5	138712422	CTAGGAGTGgAGGGAGAGgatGTg	4	F:TGTTCTGGGCACAAGAAGATAG
					R:GAGTAGCTGGGACTACAGGTAT
OTS-8	chrX	44120268	TTGGGAGTGAAGGGAtAGTgTtTt	4	F:TGACTCACTGCCAGACAATATG
					R:ACAGAGGAGTAGGCTTGTATCT
EMX1	chr2	72933793	TTGTCCTCCGGttctggatccaca	0	F:CCATCCCCTTCTGTGAATGT
					R:GGAGATTGGAGACACGGAGA
OTS-1	chr4	23758817	tTttcctccagttatggaiccaai	3	F:AGTCACGTGAACCAGAAAGTAG
					R:CTGAAGGGCTTGGGCTTTA
OTS-2	chr10	101134345	TTGTCCgCCGGTTCTGGAACCAgg	3	F:GTGACCATTAGCTCGCCTTAG
					R:GAGAGTGTGCCAACCAGAAA
OTS-3	chr6	134088151	TTCTCCTCaGGttctg aiclaat	3	F:GAACAGTGCAGGTAGAGATCAA
					R:TTTCCTCCTTTCACACCCTAAG
OTS-4	chr5	103120487	TTCTCCTCCGGTTtTGGgcCCtCA	4	F:CCGAGGTGGTCCTAAATTCAA
					R:GTCCCATAACTCGAGGCTAATC
OTS-5	chr1	2051922	CTTTCtTCtGGttctagcaccaai	4	F:GACCCGTGGGTTTGTTCTT
					R:GGAATTGGACGCCGGAAT
OTS-6	chr19	48509366	CTGTCCTCCIGTTCTGtgtCCACA	4	F:CATACAGCACTCCTTCCACTC
					R:GTGTTGGTAGCACTCAGGAA
OTS-7	chr14	31356145	CTATCtTCIGGTTCTGtAACgACA	4	F:CGTTAGAACCCTACAGTCAGAATA
					G
					R:GACCAGGCACAGTAGTTTACA
OTS-8	chr8	87712058	CTCTCCTCCTGTTCTGaAtCCItA	5	F:AATGGAGCAGGAAGAGGAATG
					R:CTGTTGAGGCAACGATCAATTC

VEGF	chr6	43769529	TTTGGGAGGTCAGAAATAGGGGGT	0	F:СTCAGCTCCACAAACTTGGTGCC
A					
					R:AGcccgccgeantgang
OTS-1	chr8	144554313	CTGGGGAtGTCAGgAgTAGGGGGT	3	F:GTGGTCTGAACAGGGATCTTC
					R:GGTtGTGGCAGGGAATTAGA
OTS-2	chr3	39323102	TTGGGGAGGTCAGtAATAGGGaGT	2	F:CAGCTCAGTTCAATTCTGTGTG
					R:CAGAGATGGGCTCTTCTGATAAT
OTS-3	chr16	4604192	TTAGGGAGGgCAGAAATTGGGGGc	3	F:CTGGCTTGACTTCTGACTCTC
					R:ACGGCTTGTTCTGCAAGAT
OTS-4	chr13	67223317	TTGGGGAGGTCAGAAAAAGtGGat	3	F:GAACATTGGAATACCCATAGGAGA
					R:CACAGGAAGAAAGGACTTTAATC
					A
OTS-5	chr6	27374720	CTCcagaggtcaganataggtgat	3	F:CAGAACACACTCGCTCTTGA
					R:CAGACAACCCTGGGAAATGTA
OTS-6	chr11	68469846	TTGGGGAGGTCAGAAAgAGGGaag	4	F:GTAGGCACATGCTACTACACC
					R:TCCCTCCACTCCTTCTGTT
OTS-7	chr14	91353588	TTGGGGAGGTCAGAAgTCGGGcct	4	F:GCACATTCTTGCACCATCTTC
					R:ATCCCACCGAAGCCATtTAG
OTS-8	chr16	84594983	CTGGGGAGGTCtGAAAgAGGGGaa	4	F:GAGTGTCGTCAGAGCATCAA
					R:AAACCACGTCCCTCTTTACC
GRIN	chr12	13866304	TTCAAGGACCTTATCTCCTTTCAT	0	F:GCATACTCGCATGGCTACCT
2b					
					R:СTCCCTGCAGCCCCTTTTTA
	chr5	41757489	CTGAAGGACCatatctutttcat	3	F:CCCACACACCAGTGTCTATTC
					R:TACTTAGCCCATCTGCCttt
OTS-2	chr4	169303367	CTAAAGGACCTTACCTCCTTTCCT	2	F:TTCATCCAGGTGCCTCTAAAC
					R:GACCAACCACAACCAAAGAAAG
OTS-3	chr2	146415233	tTAAAGGACCTAATCTCTTaTCAT	3	F:CTTCCCATAATACTTCGGGTCTG
					R:GACTCCATTTCTCAGGCATAGT
OTS-4	chr6	2737740	CTGAAGGACATTTTCTTCTTTCAT	3	F:GGGAGGAACGAACACATTCT
					R:Gatagatcaggatgetggatait
					C
OTS-5	chrX	114935355	CTCAAGGACtTTAcCTCCTTTCct	3	F:TGTGCAGGCTGTAGAGAAAG
					R:CAAGTATGAGGGTCAGGAACAA
OTS-6	chr5	95047159	TTCAAGGACaTcATCTaCTTTCAT	3	F:TCTCATCCTGATCCTTCCTCTC
					R:GCAGTCATGACACACCATGTA
OTS-7	chr11	114648765	CTCAAGGACTTTATCTCCTTTtcT	3	F:TCCAGGAAGAGCCAATGTTT
					R:TGCTGAAGGCGAAAGGAATA
OTS-8	chr13	46693304	ITTAAGGACCCAAgCTCCTTTCAT	3	F:GTAACTTGCCATTGGTCACATAG
					R:CTCATGTACAGGTGAGGGAATC

Supplementary Table 4. U6 forward prime and Sequencing Primers.

Locus	Forward Primers $\left(5^{\prime}-3^{\prime}\right)$	Reverse Primers (5'-3')
U6	GAGGGCCTATTTCCCATGATTCCT	-
GFP	AAGGGCGAGGAGCTGTT	ACTGGGTGCTCAGGTAGTG
DNMT1-1	CCGCAGGTGTTTGAGATTTATG	GAGCGCGATGGCATAATCT
DNMT1-3	CTGGGACTCAGGCGGGTCAC	CCTCACACAACAGCTTCATGTCAGC
EMX1	CCATCCCCTTCTGTGAATGT	GGAGATTGGAGACACGGAGA
RS1	CGGTTATCTGGCTTGACACTTG	GTGAGGATCCCTGAAATCACTTTG
NRL	TTTGCAGACCTTCGCTAGTC	CAGCAGACCGCCTACATAATC
HBB	GTGTGGAAGTCTCAGGATCGT	AGGAGCTGTGGGAGGAAGAT
CCR5	TGCTGCATCAACCCCATCAT	CACAAGTCTCTCGCCTGGTT
VEGFA	CTCAGCTCCACAAACTTGGTGCC	AGCCCGCCGCAATGAAGG
GRIN2b	GCATACTCGCATGGCTACCT	CTCCCTGCAGCCCCTTTTTA

[^0]: * To whom correspondence should be addressed. Tel: +86-577-8883 1367;

 Fax: +86-577-8883 1367; Email: gufenguw@gmail.com

