Supplemental Data

Measuring Deaminated Nucleotide Surveillance Enzyme ITPA Activity with an ATP-releasing Nucleotide Chimera

Debin Ji¹, Elena I. Stepchenkova²,³,⁴, Jian Cui², Miriam R. Menezes⁵, Youri I. Pavlov²,⁶*, and Eric T. Kool¹*

¹Department of Chemistry, Stanford University, Stanford, CA 94305, ²The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, ³Department of Genetics and Biotechnology, Saint-Petersburg State University, St. Petersburg, Russia; ⁴Saint-Petersburg Branch of Vavilov Institute of General Genetics, RAS, St. Petersburg, Russia, ⁵Department of Neurosurgery, University of Texas Health Science Center, Houston, TX-77030, ⁶Departments of Biochemistry and Molecular Biology; Microbiology and Pathology; Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 61818

*Authors to whom correspondence should be addressed: kool@stanford.edu and ypavlov@unmc.edu
Suppl Figure 1. ITP hydrolyzing activity in extracts of wild type and ITPA-deficient yeast strains with DIAL substrate. We used 100 µM substrate and crude yeast cells extract (0.5 µg of total protein per 10 µl reaction). Reaction time varies 15min – 1 hour, temperature is 30°C.

*P < 0.01
Suppl. Figs. 2,3: 1H-NMR and 31P-NMR spectra of DIAL chimeric nucleotide