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S1 Abundance flow graph

S1.1 Formal definitions of α and PSI

Let αh denote the relative abundance of isoform h of a gene. For convenience, denote the
junction segment formed by exon segments i and j as a pair (i, j), where i 6= j. For simplicity,
we will also denote an exon segment i as the identity pair (i, i). All such pairs will uniformly be
referred to as segments. The indicator variable Ihij is defined as

Ihij =

{
1 if isoform h covers segment (i, j)
0 otherwise

where the segment (i, j) represents an exon segment if i = j or a junction segment otherwise.
The parameter αij for segment (i, j) is formally defined as

αij =
∑
h

Ihijαh (S1.1)

Note that isoforms will not be explicitly dealt with in our method (i.e., they will be marginalized
out), but they are used here to help explain the construction of our model, and will be referred
to frequently below.

PSI is defined as the ratio of the total relative abundance of all isoforms containing a given
exon over the total relative abundance of all isoforms of the gene containing the exon. Hence,
the PSI value of exon segment i can be expressed by the following equation:

ψi =

∑
h Ihiiαh∑
h αh

=
αii∑
h αh

(S1.2)

S1.2 Properties of the abundance flow graph

In order to consider the first and last exon segments of an isoform, we extend the above
indicator variables as follows:

Ihsi =

{
1 if exon segment i is the first exon segment of isoform h
0 otherwise

Ihit =

{
1 if exon segment i is the last exon segment of isoform h
0 otherwise

Then, the edge weights αsi and αit in an abundance flow graph can be defined formally as

αsi =
∑
h

Ihsiαh, αit =
∑
h

Ihitαh (S1.3)

Theorem S1. The following equalities hold:∑
i

αsi =
∑
h

αh =
∑
i

αit (S1.4)

Proof. Since every isoform has a unique first exon segment, we have the following equality:∑
i

Ihsi = 1

Hence, ∑
i

αsi =
∑
i

∑
h

Ihsiαh

=
∑
h

αh
∑
i

Ihsi

=
∑
h

αh

The second equality can be derived similarly.
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The abundance flow graph satisfies the flow conservation property, if we consider the edge
weights as flow amounts. Figure S1 illustrates an example of this flow conservation property.

a. Reference genome

b. Isoforms
α = z1
α = z2

c. AFG

u1 v1

u2 v2

u3 v3

u4 v4 t
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Figure S1: This figure illustrates the flow conservation property of an example AFG for a gene consisting
of four exon segments and two isoforms. The exon boundaries are shown in (a) and the relative abundance
of the two isoforms (z1 and z2) are shown in (b). The resulting AFG is shown in (c). The two isoforms
are highlighted as two paths with colors cyan and pink from s to t, respectively. Considering the edge
weights as flow amounts, the flow conservation property clearly holds for all vertices in U and V . In
particular, Figure (d) shows that the flow conservation property holds for vertices u1 and v1.
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The following theorem provides a formal derivation of the flow conservation property.

Theorem S2.

αii = αsi +
∑
j<i

αji, for all i (S1.5)

αii = αit +
∑
j>i

αij , for all i (S1.6)

Proof. We first prove that equality S1.5 holds. For any given isoform, an exon segment i of the
isoform is either its first exon segment or next to exon segment j for some j < i. Therefore, for
each isoform h,

Ihii = Ihsi +
∑
j<i

Ihji (S1.7)

Multiplying both sides of Equation S1.7 by αh and summing up the equations for all isoforms
h, we get

∑
h

Ihiiαh =
∑
h

Ihsi +
∑
j<i

Ihji

αh

⇒
∑
h

Ihiiαh =
∑
h

Ihsiαh +
∑
j<i

∑
h

Ihjiαh

⇒ αii = αsi +
∑
j<i

αji (by Equations S1.1 and S1.3)

Hence, equality S1.5 holds. Equality S1.6 can be proven similarly.

Corollary S1. The PSI values can be rewritten as

ψi =
αii∑

i αii −
∑

i

∑
j>i αij

(S1.8)

Proof. By Equation S1.2, we only need to focus on the denominator.∑
h

αh =
∑
i

αsi (by Equation S1.4)

=
∑
i

αii −∑
j<i

αji

 (by Equation S1.5)

=
∑
i

αii −
∑
i

∑
j<i

αji

=
∑
i

αii −
∑
i

∑
j>i

αij

Since αsi ≥ 0 and αit ≥ 0 for all i, we have the following constraints for the parameters αij :

Corollary S2.

αii ≥
∑
j<i

αji, for all i (S1.9)

αii ≥
∑
j>i

αij , for all i (S1.10)

These constraints are crucial for an accurate estimation of our probabilistic model.
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S2 Probabilistic generative model

S2.1 Subscript rearrangement

In order to perform a genome-wide analysis, we use a single index s to indicate a segment
(exon or junction) of any gene g, and αgs to denote the total relative abundance of all isoforms
containing segment s of gene g. Hence, the PSI value of exon segment i of gene g can be rewritten
as

ψgi =
αgi∑

s∈g
s is an exon segment

αgs −
∑
s∈g

s is a junction segment

αgs
(S2.1)

S2.2 Random variables and parameters

Three random variables are defined for the probabilistic generative model.

1. G represents a random gene. Thus, P (G = g) = γg indicates that the probability that a
read is generated from gene g is γg.

2. Sg represents a random segment of gene g, and P (Sg = s|G = g) = θgs indicates that each
read from gene g is generated from segment s with conditional probability θgs.

3. M represents a random k-mer, and P (M = m) indicates the probability of k-mer m being
observed.

S2.3 Graphical model

The probabilistic generative model can be represented by the following graphical model:

G Sg M

γ Θ

# of genes

The probability of observing a k-mer m can be calculated as

P (M = m)

=
∑
g

∑
s∈g

P (M = m,Sg = s,G = g)

=
∑
g

∑
s∈g

P (M = m|Sg = s,G = g) P (Sg = s|G = g) P (G = g)

=
∑
g

P (G = g)
∑
s∈g

P (Sg = s|G = g) P (M = m|Sg = s,G = g)

=
∑
g

γg
∑
s∈g

θgsP (M = m|Sg = s,G = g)

where P (M = m|Sg = s,G = g) denotes the theoretical distribution of k-mers on segment s.
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S2.4 Relationship between γ, θ and α

Let Lgs denote the length of segment s of gene g and Lgh denote the length of isoform h of
gene g. The number of possible starting sites for a read in the segment or isoform are

L̃gs = Lgs − Lread + 1

L̃gh = Lgh − Lread + 1

respectively, where Lread denotes the read length. If the relative abundance is measured by
TPM, αgh can be calculated as

αgh =

fgh

L̃gh∑
g

∑
h′∈g

fgh′

L̃gh′
× 10−6

(S2.2)

where fgh represents the number of reads from isoform h of gene g. Similarly, let fgs denote the
number of reads from segment s of gene g, and the indicator variable Ighs to indicate whether
isoform h contains segment s of gene g. Assuming that the reads are uniformly distributed in
each segment/isoform, we get

fgs =
∑
h∈g
Ighsfgh

L̃gs

L̃gh
(S2.3)

Note that the reads are generated by an implicit two-level process in the above probabilistic
model: from genes to isoforms and then to segments. Equation S2.3 marginalizes out isoforms
to associate the reads with segments directly.

Since the reads are assumed to be generated from the probabilistic model, we have

γgθgs ≈
fgs∑

g

∑
h∈g

fgh
(S2.4)

The following proposition shows a relationship among γ, θ and α.

Proposition S1.

αgs ≈
Z2

Z1

γgθgs

L̃gs
(S2.5)

where Z1 =
∑
g

∑
h∈g

fgh

L̃gh
× 10−6 and Z2 =

∑
g

∑
h∈g

fgh.

Proof.

γgθgs ≈ fgs
Z2

(by Equation S2.4)

=
1

Z2

∑
h∈g
Ighsfgh

L̃gs

L̃gh
(by Equation S2.3)

=
L̃gs
Z2

∑
h∈g
Ighs

fgh

L̃gh

=
L̃gs
Z2

∑
h∈g
IghsαghZ1 (by Equation S2.2)

=
Z1

Z2
L̃gs

∑
h∈g
Ighsαgh

=
Z1

Z2
L̃gsαgs (by Equation S1.1)
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Therefore, the definition of PSI given in Equation S2.1 can be rewritten in terms of θ as
follows:

ψgi ≈
θgi

L̃gi∑
s∈g

s is an exon segment

θgs

L̃gs
−

∑
s∈g

s is a junction segment

θgs

L̃gs

(S2.6)

The linear inequalities S1.9 and S1.10 can also be transformed into the constraints on θ. For
gene g, the parameter θ should satisfy Agθg ≥ 0, which is the matrix-form of the constraints.
More specifically, Ag is composed of three parts:

Ag =

 Dg

Ug
Bg

 (S2.7)

Each row of Dg ∈ RNe(g)×Ns(g) denotes the coefficients of the linear constraints between each
exon segment and its downstream junction segments (i.e., the inequality in Equation S1.10).
Ne(g) denotes the number of exon segments in gene g and Ns(g) the number of (exon and
junction) segments in gene g. The element at row i and column s is defined as

Dg (i, s) =


1

L̃gs
if s is an exon segment i

− 1

L̃gs
if s is a junction segment beginning at exon segment i

0 otherwise

(S2.8)

Similarly, each row of Ug ∈ RNe(g)×Ns(g) denotes the coefficients of the linear constraints between
each exon segment and its upstream junction segments (i.e., the inequality in Equation S1.9).
Its elements are defined as

Ug (i, s) =


1

L̃gs
if s is exon segment i

− 1

L̃gs
if s is a junction segment ending at exon segment i

0 otherwise

(S2.9)

Bg ∈ R(Ns(g)−Ne(g))×Ns(g) represents the non-negativity constraints on the relative abundance
of junction segments, which is defined as

Bg = (0, I) (S2.10)

where 0 ∈ R(Ns(g)−Ne(g))×Ne(g)

I ∈ R(Ns(g)−Ne(g))×(Ns(g)−Ne(g))

The non-negativity constraints on the relative abundance of exon segments are omitted here
since they are already implied by the constraints in Dg,Ug and Bg.

S2.5 Theoretical distribution of k-mers

Let r represent a read and mr represent a k-mer in r. Define the following indicator function:

I (m,mr) =

{
1 if m = mr

0 if m 6= mr

Recall cgsm = P (M = m|Sg = s,G = g) denotes the theoretical distribution of k-mers on seg-
ment s of gene g, under the assumption that the reads are uniformly distributed on each segment.
The following proposition is easy to prove.
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Proposition S2.

cgsm := P (M = m|Sg = s,G = g) =
Fgsm

L̃gs (Lread −K + 1)
(S2.11)

where
Fgsm =

∑
r∈s

∑
mr

I (mr,m) (S2.12)

Finally, the probability of observing a k-mer m is

P (M = m) =
∑
g

γg
∑
s∈g

θgscgsm (S2.13)

where γg and θgs are model parameters to be estimated.
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S3 Algorithms

S3.1 Maximum likelihood estimation

Let nm denote the number of occurrences of k-mer m in the input RNA-seq reads. The
likelihood of observing all k-mers in the input is

L (γ,Θ) =
∏
m

P (M = m)nm

logL (γ,Θ) =
∑
m

nm log P (M = m)

=
∑
m

nm log

(∑
g

γg
∑
s∈g

θgscgsm

)

The maximum likelihood estimation is to solve the following nonlinear constrained optimization:

max logL (γ,Θ)

s.t. Agθg ≥ 0, for all gene g∑
s∈g

θgs = 1, for all gene g∑
g

γg = 1, ∀γg ≥ 0, ∀θgs ≥ 0

S3.2 The expectation-maximization algorithm

An initial feasible solution is obtained via the following algorithm.

Algorithm S1: Initial feasible solution construction

Input: cgsm, nm and Ag (for all g, s and m)
Output: θ(0) and γ(0)

1 begin
2 Zm ←

∑
g

∑
s∈g

cgsm, θgs ←
∑
m
nm

cgsm
Zm

, γg ←
∑
s∈g

θgs . distribute nm to segments

3 Y ←
∑
g
γg, γg ← γg

Y . normalize γ

4 forall g do
5 forall row vector ar in Ag with arθg < 0 do
6 if θgs = 0 for some exon segment s then
7 set all θgs′ ← 0 for all adjacent junction segments s′ . make θ feasible

8 end
9 while arθg < 0 do

10 θgs ← θgs× 10 for all exon segments s . make θ feasible

11 end

12 Xg ←
∑
s∈g

θgs, θgs ← θgs
Xg

. normalize θ

13 end

14 end

15 return θ(0) and γ(0)

16 end

In the E-step of the EM algorithm, we derive the expected log-likelihood using the current
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estimation of γ
(t)
g and θ

(t)
gs as follows:

Q (γ,Θ) =
∑
m

nm
∑
g

µ(t)
gm log

(
γg
∑
s∈g

cgsmθgs

)
(S3.1)

where

µ(t)
gm =

γ
(t)
g
∑
s∈g

θ
(t)
gs cgsm∑

g
γ

(t)
g
∑
s∈g

θ
(t)
gs cgsm

By expanding the product in the logarithmic term of Equation S3.1, Q (γ,Θ) can be decomposed
as the summation of two independent parts:

Q (γ,Θ) = QI (γ) +
∑
g

QII
g (θg) (S3.2)

where

QI (γ) =
∑
m

∑
g

µ(t)
gm log (γg)

QII
g (θg) =

∑
m

µ(t)
gm log

(∑
s∈g

θgscgsm

)

The M-step of the algorithm is to maximize the expectation of the log-likelihood given in
Equation S3.2. This is divided into two independent parts. The first part is to solve

max QI (γ)

s.t.
∑
g

γg = 1, ∀γg ≥ 0

By using the Lagrangian multiplier method, a closed-form solution for this part can be derived:

γ(t+1)
g =

∑
m
µ

(t)
gm∑

m

∑
g
µ

(t)
gm

The second part consists of a similar optimization problem for each gene g:

max QII
g (θg) (S3.3)

s.t. Agθg ≥ 0,
∑
s∈g

θgs = 1, ∀θgs ≥ 0

Since a closed-form solution for this problem is unavailable due to the linear inequality con-
straints, the conjugate gradient projection descent (CGPD) algorithm is applied to solve the
problem for all genes concurrently.

S3.3 The conjugate gradient projection descent algorithm

The CGPD algorithm is an extension of the well-known gradient projection descent (GPD)
algorithm [1]. For completeness, a pseudocode of the CGPD algorithm is given below.
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Algorithm S2: The CGPD algorithm

Input: θg, Ag

Output: arg maxQII
g (θg) s.t. Agθg ≥ 0,

∑
s∈g

θgs = 1, ∀θgs ≥ 0

1 begin

2 i← 0 , x(i) ← θg , g(i) ← ∇QII
g

(
x(i)
)

3 q ← 1 , Nq ← (1, 1, · · · , 1)>

4 forall row vector aj in Ag do

5 if ajx
(i) = 0 then

6 Nq+1 ←
(
Nq,a

>
j

)
7 q ← q + 1

8 end

9 end

10 H
(i)
q ← Iq×q

11 repeat

12 s(i) = H
(i)
q g(i) . construct conjugate gradient direction

13 α←
(
N>q Nq

)−1
N>q g

(i) . construct projected gradient direction

14 bjj ←
(
N>q Nq

)−1

jj

15 if s(i) = 0 and ∀αj ≤ 0 then

16 return x(i)

17 else if
∥∥s(i)

∥∥ ≤ max
{

1
2αjb

−1/2
jj

}
then

18 update Nq as Nq−1 . deactivate a constraint

19 update H
(i)
q as H

(i)
q−1

20 q ← q − 1

21 else

22 λ(i) ← arg maxQII
g

(
x(i) + λs(i)

)
s.t. 0 ≤ λ ≤ λbound . perform line search

23 if λ(i) = 0 then

24 return x(i)

25 else if λ(i) = λbound then
26 update Nq as Nq+1 . activate a constraint

27 update H
(i)
q as H

(i+1)
q+1

28 q ← q + 1

29 else

30 update H
(i)
q as H

(i+1)
q . keep the constraints

31 end

32 x(i+1) ← x(i) + λ(i)s(i) , g(i+1) ← ∇QII
g

(
x(i+1)

)
33 i← i+ 1

34 end

35 end

36 end
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S4 Some implementation details

S4.1 Linear indexing algorithm

Algorithm S3: Linear indexing algorithm

Input: sequence S with length L
Output: indices of all k-mers in S

1 begin
2 a← 0
3 for i = 1, · · · ,K − 1 do
4 a← (a lsh 2) or H(Si)
5 end
6 mask ← (1 lsh K)− 1
7 A← {}
8 for i = K, · · · , L do
9 a← (a lsh 2) or H(Si)

10 a← a and mask
11 A← A ∪ {a}
12 end
13 return A

14 end
Input: base pair s
Output: index of s

15 function H
16 switch s do
17 case ‘A’ do return 0
18 case ‘C’ do return 1
19 case ‘G’ do return 2
20 case ‘T’ do return 3

21 end

22 end

S4.2 Techniques for improving the efficiency of CGPD

S4.2.1 Offline computation for part of ∇QII
g (θg)

∇QII
g (θg) can be represented by

∇QII
g (θg) = diag−1

(
CgC

>
g θg

)
(Cgµg) (S4.1)

where Cg ∈ Rns(g)×nk is the matrix form of cgsm and µg ∈ Rnk×1 is the vector form of µgm, with
nk denoting the number of k-mers and ns(g) the number of segments in gene g. Assuming that
the CGPD algorithm converges in T iterations, its time complexity is then O

(
Tnkns(g)2

)
, if

∇QII
g (θg) is computed directly according to Equation S4.1. Since only θg is changed during the

iterations, CgC
>
g and Cgµg (the iteration-invariant parts) can be computed in advance. This

way, the time complexity is reduced into O
(
nkns(g)2 + Tns(g)2

)
.
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S4.2.2 Replacing outer product of vectors

The CGPD algorithm performs many vector outer product operation in the following form:

H(t+1) = H(t) ± qq>

where H ∈ Rn×n and q ∈ Rn×1. A direct computation requires allocating n×n new memory to
store the matrix qq>, which is redundant and becomes an efficiency bottleneck of FreePSI. To
speed up this frequent operation, we update H by in-space column-wise operations as follows:

H
(t+1)
·i ←H

(t)
·i ± qiq for i = 1, · · · , n

which does not require temporary memory allocation.

13



S5 Supplementary results and discussion

S5.1 Simulated data evaluation

Figure S2: The scatter plot for genome-wide evaluation of different methods on the simulated
data. The X-axis shows the true PSI values in the simulation and the Y-axis the PSI values
estimated by different methods.
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Figure S3: The scatter plot for exon-centric evaluation of different methods on the simulated
data. The X-axis shows the true PSI values in the simulation and the Y-axis the PSI values
estimated by different methods.
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S5.2 Real data evaluation

Figure S4: The scatter plot for exon-centric evaluation of different methods on the real data.
The X-axis shows the true PSI values calculated from the qRT-PCR PSI results and the Y-axis
the PSI values estimated by different methods.
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S5.3 Impact of the quality of transcriptome assembly

Figure S5: The scatter plots for Cufflinks-A (row 1), Cufflinks-A-Salmon (row 2) and FreePSI
(row 3). Note that the plots for Cufflinks-A and FreePSI also appear in Figure 3 and Supple-
mentary Figures S2, S3 and S4. We include them here again for the reader’s convenience.
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S5.4 Impact of k-mer length on FreePSI

The parameter K representing the length k-mers considered in FreePSI is critical to the
performance of FreePSI. We use the simulated dataset with 100 million reads to study the
impact of K.

Figure S6: The performance of FreePSI under several choices of K.

The above figure shows the performance of FreePSI on the simulated dataset when different
values of K was applied. In both evaluations, the performance peaked under a moderate K,
although the optimal K values were different. The reason is that a smaller K induces more k-
mers shared by different segments, which increases the difficulty of the estimation. On the other
hand, a larger K results in fewer k-mers representing a segment, which makes the estimation
more sensitive to sequencing errors. Hence, a moderate K in the range of 23 and 27 seems to
work well for FreePSI generally, and we set the default K as 27.

S5.5 Supplementary tables

Table S1: Impact of sequencing depth on the performance of MISO, Salmon, Cufflinks-A, and FreePSI
on simulated data. The numbers of genes and exons selected for the genome-wide and exon-centric
evaluations, respectively, are also shown in the table.

# reads 20M 50M 100M

Pearson correlation
for genome-wide evaluation

# genes 6907 7025 7032
Salmon 0.997 0.998 0.998

Cufflinks-A 0.783 0.836 0.826
FreePSI 0.783 0.837 0.869

Pearson correlation
for exon-centric evaluation

# exons 10930 10958 10919
MISO 0.678 0.750 0.807

Salmon 0.978 0.994 0.995
Cufflinks-A 0.773 0.845 0.884

FreePSI 0.817 0.862 0.895
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Table S2: Performance of Salmon and Cufflinks-G on incomplete reference transcriptomes with different
sampling rates. Here, a sampling rate represents what percentage of the true reference transcriptome
would be covered in the provided reference transcriptome.

Sampling rate 100% 90% 80% 70%

Pearson correlation
for genome-wide evaluation

Salmon 0.998 0.913 0.804 0.725
Cufflinks-G 0.986 0.904 0.796 0.718

Pearson correlation
for exon-centric evaluation

Salmon 0.995 0.934 0.848 0.780
Cufflinks-G 0.985 0.926 0.843 0.777

Table S3: Performance of Salmon, Cufflink-G, Cufflinks-A, and FreePSI on genes under different TPM
thresholds.

TPM 0 1 2 5 10

Salmon 0.967 0.997 0.997 0.998 0.998
Cufflinks-G 0.964 0.982 0.983 0.985 0.986
Cufflinks-A 0.742 0.684 0.751 0.812 0.826

FreePSI 0.856 0.802 0.828 0.856 0.869

Table S4: Performance of Salmon, Cufflink-G, Cufflinks-A, and FreePSI on 14 gene families with large
proportions of multi-mapped reads in the simulation. As a comparison, the corresponding numbers for
the whole genome are given in the last row of the table.

Gene family
Multi-read
proportion

FreePSI Cufflinks-A Salmon Cufflinks-G # genes # isoforms
# expressed

genes
PAR1 38.16 % 0.968 0.230 1.000 0.434 21 103 8
GST 36.61 % 0.760 0.419 1.000 1.000 23 57 8
CDK 27.12 % 0.911 0.615 0.999 0.980 26 88 13

MAGE 25.64 % 0.978 0.541 0.999 0.997 39 103 7
NLR 15.90 % 0.805 0.524 1.000 0.998 23 60 9
TTC 13.37 % 0.709 0.698 0.999 0.984 115 373 46
TUB 10.78 % 0.907 0.755 0.999 0.998 24 59 11
SDR 9.95 % 0.907 0.825 1.000 0.999 75 179 23
NUP 7.88 % 0.536 0.884 1.000 0.994 32 89 15
DDX 5.63 % 0.943 0.867 0.994 0.974 42 108 17
CLEC 5.34 % 0.950 0.891 0.998 0.993 46 130 21
TRIM 5.23 % 0.931 0.849 1.000 0.997 80 189 26
SCAR 4.49 % 0.915 0.942 0.999 0.996 27 79 9
AKAP 3.04 % 0.947 0.849 1.000 0.882 29 73 10

Whole genome 2.48 % 0.869 0.826 0.998 0.986 23983 57822 7032
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S6 Software configurations

• Jellyfish on simulated data
jellyfish count -m 27 -s 100M -t 16 -Q 5 ${READS} -o ${OUTPUT}

• Jellyfish on real data
jellyfish count -m 27 -s 100M -t 16 -Q A -L 10 ${READS} -o ${OUTPUT}

• HISAT
hisat2 --fr --dta-cufflinks -p 16 -x ${GENOME_INDEX} -1 ${READS-1} -2 ${READS-2}

| samtools view --threads 16 -Sbo ${BAM_FILE}

• FreePSI
freePSI build -k 27 -p 16 -g ${REF_GENOME} -1 ${READS-1} -2 ${READS-2}

-a ${EXON_BND} -o ${HASHTABLE}

freePSI quant -k 27 -p 16 -i ${HASHTABLE} -o ${OUTPUT}

• Salmon
salmon index -t ${REF_TRANSCRIPTOME} -i ${INDEX}

salmon quant -p 16 -l ISF -i ${INDEX} -1 ${READS-1} -2 ${READS-2} -o ${OUTPUT}

• Cufflinks-A
cufflinks -u -b ${GENOME_INDEX} -p 16 --library-type fr-secondstrand ${BAM}

-o ${OUTPUT}

• Cufflinks-G
cufflinks -u -b ${GENOME_INDEX} -p 16 --library-type fr-secondstrand ${BAM}

-G ${REF_TRANSCRIPTOME} -o ${OUTPUT}

• MISO
miso --run ${REF_SPLICING} ${BAM_FILE} --settings-filename=${DEFAULT_MISO_SETTING}

-p 16 --read-len ${READ_LEN} output-dir ${OUTPUT}

• Flux Simulator (.par file)
REF_FILE_NAME ${REF_TRANSCRIPTOME}

GEN_DIR ${REF_GENOME}

NB_MOLECULES 5000000

TSS_MEAN 25

POLYA_SCALE NaN

POLYA_SHAPE NaN

RTRANSCRIPTION YES

RT_PRIMER RH

FRAG_SUBSTRATE RNA

FRAG_METHOD UR

FRAG_UR_ETA NaN

FRAG_UR_D0 1

READ_NUMBER 100000000

READ_LENGTH 76

PAIRED_END YES

ERR_FILE 76

FASTA YES

UNIQUE_IDS YES

More details can be found in the source code.
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