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Figure S1: Heatmap representation of relative spliced-in coefficients (RSICs) for three
exonic regions (E004, EOO5 and E006) of the gene ALASI on subset A of the GTEx
data. Each row of the heatmap shows data for one tissue and each column shows data
for one individual. Colors represent the RSIC values.
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Figure S2: Panel A shows a heatmap representation of relative spliced-in coefficients
(RSICs) for two exonic regions (E014 [g-value=0, tissue score=2.17] and E016 [g-
value=0), tissue score=2.32]) of the gene SLC25A3 on subset C of the GTEx data. Panel
B shows sashimi plots of the RNA-seq data from the colon and heart samples from
individual /1178. The highlighted area corresponds to the genomic coordinates of the
exons shown in Panel A. These mutually exclusive exons were initially described in an
independent study 5*! that also used RNA-seq data but different bioinformatic methods.
As shown in these two panels as well as in figure 1A from the previous study>?', this
splicing event is regulated differently in heart as compared to other tissues.
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Figure S3: Panel A shows a heatmap representation of relative spliced-in coefficients
(RSICs) for the exonic regions (E031-E037; all with g-values < 0.1 and tissue scores
> 1.5) corresponding to two mutually exclusive alternative exons of the gene MEF2C
on subset B of the GTEx data. Panel B shows sashimi plots of the RNA-seq data from
the skeletal muscle and thyroid samples from individual //DXX. The highlighted area
corresponds to the genomic coordinates of the exons shown in Panel A. This splicing
event was initially described for mouse tissues in an independent study>** using RT-
PCR. This splicing event is regulated differently in skeletal muscle as compared to
other tissues. Figure 2C from the original study 5> shows the exact same pattern for
mouse tissues, which demonstrates that it is a conserved event.
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Figure S4: Panel A shows a heatmap representation of relative exon usage coefficients
(REUC:) for the 8 exonic regions of the gene ANK3 with the highest tissue scores (all
with g-values < 0.1 and tissue scores > 2.19). Panel B shows sashimi plots of the RNA-
seq data from the skeletal muscle and tibial nerve samples from individual //DXX.
Skeletal muscle and tibial nerve initiate transcription from different transcription start
sites. Panel C shows sashimi plots (using the same samples as panel B) highlighting
an exon-skipping event (exonic region £067) that is differentially regulated between
skeletal muscle and tibial nerve. These three panels show that ANK3 transcript isoforms
expressed in skeletal muscle are very different to the ones expressed in the rest of
the tissues. The expression of skeletal muscle-specific isoforms of ANK3 has been
previously described in rats using northern blots>**. Our analysis of human RNA-
seq data substantiates this finding (63 out of the 109 exonic regions of this gene were
detected as tissue-dependent), and further indicates that skeletal-muscle undergoes an
isoform switch involving both alternative start sites and alternative splicing.
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Figure S5: Panel A shows a heatmap representation of the relative spliced-in coeffi-
cients (RSICs) for the exonic region E006 (g-values < 0.1 and tissue score > 1.21)
of the gene SGCE. Panel B shows sashimi plots of the RNA-seq data from the hip-
pocampus and cerebellum samples from individual /2ZZX. The highlighted region
corresponds to the genomic coordinates of the exon E006. As shown in these two
panels, this cassette event is differentially regulated across brain regions. This pattern
of tissue-dependent usage was also observed in another study using qPCR**: Figure 2
of that study also shows that exon E006, labelled there as “11b”, is frequently included
in cerebellum as compared to the rest of the brain regions.
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Figure S6: Panel A shows a heatmap representation of the relative exon usage coeffi-
cients (REUCs) for the exonic regions E056 (g-values < 0.1 and tissue score = 1.01)
and E061 (g-values < 0.1 and tissue score = 1.32) of the gene MYOIC. Panel B shows
relative spliced-in coefficients (RSICs) for the same exonic regions. Exon E056 is al-
ternatively spliced, while the usage of E06] depends on the usage of a transcription
start site. Panel C shows sashimi plots of the RNA-seq data from the heart and colon
samples from individual ZF29. The highlighted regions corresponds to the genomic
coordinates of exons E056 and E061. These three panels show that an alternative
first exon event is differentially regulated across tissues. While heart uses exon E061
and splices out exon E056, the rest of the tissues use more frequently a TSS in E056.
This same tissue-dependent event has been previously described in mouse tissues using
quantitative real-time PCR5%°: in that study, exon E056 was labelled “Exon -1 (cod-
ing for the peptide MRYRA* both in human and mouse) and exon E061 was labelled
as “Exon -2” (coding for the peptide MALQVE® both in human and mouse). Interest-
ingly, while this splicing event is conserved between human and mouse, the patterns of
exon inclusion were different between corresponding tissues of the two species (par-
ticularly for heart tissue). This observation is consistent with human tissue qPCR data
(Maly and Hofmann, 2016, unpublished, personal communication).
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Figure S7: Panel A shows a heatmap representation of the relative exon usage coeffi-
cients (REUCs) for the exonic regions E045 (g-values < 0.1 and tissue score = 1.15)
and E046 (g-values < 0.1 and tissue score = 1.18) of the gene KSRI. Panel B shows
a sashimi plot of the RNA-seq data from the cerebellum and caudate samples from
individual /3JVG. The highlighted regions corresponds to the genomic coordinates of
the exons E045 and E046. Our data shows that an alternative splicing event is differ-
entially regulated across brain cell types. The resulting exon inclusion differences are
very prominent when comparing cerebellum with caudate samples. This same pattern
of tissue-dependent usage has been previously described in mouse using immunopre-
cipitation assays and immunohistochemical stainings **°. Thus, our data shows that the
regulation of this splicing event is conserved between human and mouse.
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Figure S8: Panel A shows a heatmap representation of the relative spliced-in coeffi-
cients (RSICs) for the exonic regions E039 (g-values < 0.1 and tissue score = 1.69) of
the gene ATP11B. Panel B shows a sashimi plot of the RNA-seq data from the stom-
ach and heart samples from individual XBED. The highlighted region corresponds to
the genomic coordinates of the exonic region £039. Our data shows that an alterna-
tive splicing event is regulated in a tissue-specific manner. The inclusion of this exon
is elevated in heart tissue as compared to the rest of the tissues. The same pattern of
tissue-dependent usage has been previously described using microarray data and RT-
PCR 5%, Figure 5 of that study also shows elevated exon inclusion of heart tissue as
compared stomach tissue.
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Figure S9: Panel A shows a heatmap representation of the relative spliced-in coeffi-
cients (RSICs) for two exonic regions, EO14 and E015 (g-values < 0.1 and tissue scores
> 1.7) of the gene TPD52. Panel B shows a sashimi plot of the RNA-seq data from the
stomach and heart samples from individual XBED. The highlighted region corresponds
to the genomic coordinates of the exonic regions E0/4 and E015. Our data shows that
these two exonic regions are regulated in a tissue-specific manner. The inclusion of
these exons is elevated in heart tissue as compared to the rest of the tissues. The same
pattern of tissue-dependent usage has been previously described using microarray data
and RT-PCR®Y. Figure 5 of that study also shows elevated exon inclusion of heart
tissue as compared stomach tissue.
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Figure S10: Panel A shows a heatmap representation of the relative spliced-in co-
efficients (RSICs) for exonic regions E021 (g-values < 0.1 and tissue score = 2.59)
of the gene ATP5CI. Panel B shows a sashimi plot of the RNA-seq data from the
esophagous and heart samples from individual //DXX. The highlighted region corre-
sponds to the genomic coordinates of the exonic region E021. Our data shows strong
tissue-dependent inclusion patterns for this exonic region. These differences are par-
ticularly pronounced when comparing skeletal muscle with esophagous, thyroid, skin
and blood. Using RT-PCR, previous studies have also reported that skeletal muscle

excludes this exon from its transcripts >*%,
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Figure S11: Panels A and C show heatmap representations of the relative spliced-in
coefficients (RSICs) for exonic regions EOOS and E009 of the gene NDUFV3 for two
subsets of the GTEx data (g-values < 0.1, tissue scores for subset C > 2.02 and tissue
scores for subset B > 0.9). Panels B and D show sashimi plots of the RNA-seq data
from individuals //DXZ (panel B) and //DXX (panel D). The highlighted regions cor-
respond to the genomic coordinates of the exonic regions EOO8 and E009. A previous
study *° used mass spectromety to analyze splicing patterns of this exon in murine and
bovine tissues. That study found that while heart and skeletal muscle frequently splice
out this exon, brain, liver and lung splice in this exon more frequently. Our analysis
of human tissues confirms these findigs, suggesting that this tissue-depenent pattern is
also conserved in humans.
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Figure S12: Panels A and B show data for subset B and subset C of the GTEx data,
respectively. The x-axis shows the tissue dependance score. The y-axis shows the p-
value in —logio scale. Each point represent one exonic region. The horizontal lines
show the thresholds on both axis used to determine tissue-dependent usage of an exonic
region. The red points represent exonic regions above the thresholds (i.e. the exonic
regions used in a tissue-dependent manner).

Exons (499,667) Genes (35,048)

46,978

Figure S13: The venn diagram on the left depicts the overlap between exons detected to
be used in a tissue-dependent manner in each of the subsets of the GTEx data. The venn
diagram on the right depicts the overlap between genes of each subset of the GTEx data
where at least one exonic region was detected to be used in a tissue-dependent manner.
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Figure S14: Panels A and C show data for subset B, while panels C and D show data for
subset C of the GTEx data. Panels A and B show histograms of the fraction of exonic
regions per gene that are subject to tissue-dependent usage. Panels C and D show
histograms of the fraction of base-pairs of each gene that is subject to tissue-dependent
usage.
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Figure S15: Heatmap representations of the relative exon usage coefficients (REUCys)
of the exonic regions of the gene EPB4114B. Each panel shows data for one exonic
region. Each column of the heatmaps shows data for one individual and each row
shows data for one tissue. Colors represent the REUC values.
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Figure S16: The y-axis of the upper panel represents counts normalized for sequencing
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one tissue of a representative individual (identifier /3/XFE). The lower panel shows the
annotation of transcript isoforms according to ENSEMBL.
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Figure S17: Panels A, B and C show data for subset B, while panels D, E and D show
data for subset C of the GTEx data. (A, D) The z-axis shows the number of sequenced
fragments supporting exon skipping. The y-axis shows the number of exonic regions
with TDU. (B, E) Each point represents one exonic region detected to be used in a
tissue-dependent manner. The x-axis shows the fraction of total REUCs variance that
is explained by variance between tissues (R>). The y-axis shows the R? statistic for the
RSICs. The colors legends are shown in panels A and D. (C, F) Cumulative distribution
(y-axis) of the pair-wise Pearson correlation coefficients between the REUCs and the
RSICs (z-axis) of each exonic region with TDU. The data are stratified by the number
of sequenced fragments supporting exon skipping (colors legends are shown in panels
A and D).
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Figure S18: Heatmap representations of the relative exon usage coefficients (REUCs)
of the exonic regions of the gene GAS7. Each panel shows data for one exonic region.
Each column of the heatmaps shows data for one individual and each row shows data
for one tissue. Colors represent the REUC values.
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Figure S19: Heatmap representations of the relative exon usage coefficients (REUCs)
of the exonic regions of the gene KRTS8. Each panel shows data for one exonic region.
Each column of the heatmaps shows data for one individual and each row shows data
for one tissue. Colors represent the REUC values.
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Figure S20: Heatmap representations of the relative exon usage coefficients (REUCs)
of the exonic regions of the gene NEBL. Each panel shows data for one exonic region.
Each column of the heatmaps shows data for one individual and each row shows data
for one tissue. Colors represent the REUC values.
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Figure S21: Panel A and panel B shows data for subset B and subset C of the GTEx
data, respectively. The percentage of exonic regions (y-axis) is shown for three sets
of exons: (1) exonic regions with TDU due to alternative splicing [DEU (AS)], (2)
exonic regions with TDU without strong evidence of alternative splicing [DEU (NAS)]
and (3) a background set of exons matched for expression and exon width. Each color
represents a different category of exons according to transcript isoforms annotations:
exons coding for principal transcript isoforms [Coding (PI)], exons coding for non-
principal transcript isoforms [Coding (non-PI)], 5° UTRs, 3° UTRs and exons from

non-coding processed transcripts [Processed transcripts].
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Figure S22: The y-axis shows the mean of normalized counts (in logio scale). Each
boxplot shows data for one category of exons according to their transcript isoform
annotations (z-axis). The data from each subset of GTEx data is plotted in different
panels. The data is also plotted in different panels according to their exon classification
based on whether (a) the exonic regions are used in a tissue-dependent manner and have
evidence of alternative splicing [DEU (Splicing)], (b) the exonic regions are used in a
tissue-dependent manner and have no evidence of alternative splicing [DEU (Other)]
or (c) the exonic regions belong to the background sets [Background].
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Figure S23: Heatmap representations of the relative spliced-in coefficients (RSICs) of
three exonic regions of the gene PKD1. Each panel shows data for one exonic region.
Each column of the heatmaps shows data for one individual and each row shows data
for one tissue. Colors represent the RSIC values.
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Figure S24: Heatmap representations of the relative spliced-in coefficients (RSICs)
of three exonic regions of the gene MAN2B2. Each panel shows data for one exonic
region. Each column of the heatmaps shows data for one individual and each row
shows data for one tissue. Colors represent the RSIC values.
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Figure S25: Heatmap representations of the relative spliced-in coefficients (RSICs) of
three exonic regions of the gene NISCH. Each panel shows data for one exonic region.
Each column of the heatmaps shows data for one individual and each row shows data
for one tissue. Colors represent the RSIC values.
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Subset A Subset B Subset C
Expressed (> 100 counts) 13,535 13,816 13,205
Expressed and TDU 8,741 10,388 6,124
Percentage 65 75 46

Table S2: Many highly expressed genes are subject to transcript isoform regulation
across tissues. Each column shows numbers for one subset of the GTEx data. Row 1:
Number of multi-exonic genes with means of normalized sequenced fragments larger
than 100. Row 2: Subset of genes from the first row that have evidence of tissue-
dependent usage in at least one exonic region. Row 3: Percentage of genes from the
first row that have evidence of tissue-dependent usage in at least one exonic region.

(Foreground) (Foreground) (Background) (Background) Odds P-value

PC Not PC PC Not PC ratio
A 8,899 940 7,241 2,598 3.40 1.3x 1021
B 10,963 1,332 7,164 2,675 3.07 9.1 x 107217
C 6418 607 7,180 2,659 3.92 5.1 x 107211

Table S3: Enrichment of protein coding genes. Each row shows data for one subset
of the GTEx data. The first four columns show the number of genes stratified by the
categories depicted in the column names (PC - protein coding; foreground - genes with
tissue-dependent usage in at least one exonic region; background - genes matched for
expression strength and number of exonic regions). The fifth column shows odds ratios
and the sixth column shows p-values from the Fisher’s exact tests

# genes with # genes (< 25% % genes (< 25%  # genes (< 25% % genes (< 25%

TDU ER TDU) ER TDU) bp TDU) bp TDU)
9,839 6,929 70 5,248 53

B 12,295 7,252 59 5,369 44
7,025 5,282 75 4,181 60

Table S4: Transcript differences across tissues. Each row shows data for one subset of
the GTEx data. The first column shows the number of genes with TDU in at least one
exonic region. The second column displays the number of genes with TDU in less than
25% of their exonic regions. The third column shows the percentage of genes from
the first row with TDU in less than 25% of their exonic regions. The fourth column
displays the number of genes with TDU in less than 25% of their length (excluding
introns). The fifth column shows the percentage of genes from the first row with TDU
in less than 25% of their length (excluding introns).
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Subset Exon skipping reads # of exonic regions % of exonic regions

(mean)
A [0,1] 24,397 51
A (1,3] 3,628 8
A 3.5] 1,656 3
A (5,10] 2,430 5
A >10 15,548 33
B [0,1] 42,749 56
B (1,3] 6,309 8
B 3.5] 2,721 4
B (5,10] 3,697 5
B >10 21,086 28
C [0,1] 16,385 53
C (1,3] 2,336 8
C 3.5] 1,163 4
C (5,10] 1,553 5
C >10 9,282 30

Table S5: Evidence of alternative splicing for exons with tissue-dependent usage. For
each subset of the GTEx data (first column), the number of exonic regions with TDU
(third column) is stratified according to their means of normalized sequenced fragments
supporting their splicing out from transcripts (second column). The fourth column
shows the percentage of exonic regions in each strata for each subset of data

A B C

# of genes with TDU 9,839 12,295 7,025

# of genes with TDU (fully AS explained) 3,338 2,996 2,492
% of genes with TDU (fully AS explained) 34 24 35

Table S6: Genes with TDEU that could be explained by alternative splicing. Each
column shows data for a subset of the GTEx data. The first row shows the number of
genes with tissue-dependent usage in at least one exonic region. The second row shows
the subset of genes from the first row in which all the exonic regions that are used in
a tissue-dependent manner have evidence of being alternatively spliced (normalized
mean across samples of exon-skipping reads larger than 1). The third row shows the
same quantity as the second row but expressed in percentage of genes.
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Cell-types

# # #
genes TDEU dTSS

# % Odds P-value
dTSS dTSS ratio

and and

TDEU TDEU

Caudate, Cere-
bellum, Cortex,

12,621 9,839 2,402

1,904 79 3.05 1.62x10° 111

Hippocampus,
Putamen
Adipose - Sub-
cutaneous,

Lung, Muscle -
Skeletal,  Skin,
Thyroid, Whole
Blood

12,548 12,295 6,763

5,427 80 1.83  3.21 x 1079

Colon, Heart,
Pancreas

12,804 7,025 2,778

1,657 60 213 1.70 x 10771

Table S7: Overlap between genes with differential transcriptional start sites usage and
genes with differential exon usage. Each row shows data for one subset of tissues. The
first column contains the cell-types available from the FANTOM consortium for each
subset of the GTEx data. The second column shows the number of genes that were
tested for differential transcription start site (dT'SS) usage. The third column shows the
number of genes that were tested for dTSS usage that had tissue-dependent exon usage
(TDEU). The fourth column shows the number of genes with dTSS usage at a FDR
of 10%. The fifth column shows the number of genes with dTSS usage that were also
detected to have TDEU. The sixth column shows the percentage of genes with dTSS
that were also detected to have TDEU. The seventh column shows odds ratios and the
eighth column shows p-values from Fisher’s exact tests.
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Subset  Exon usage class ~ Genomic class #of exons % of exons
A DEU (AS) Coding (PI) 1,870 12.66
A DEU (AS) Coding (non-PI) 4,098 27.74
A DEU (AS) 5’ UTR 1,785 12.08
A DEU (AS) 3’ UTR 2,942 19.91
A DEU (AS) Processed transcript 4,080 27.61
A DEU (NAS) Coding (PI) 16,213 70.13
A DEU (NAS) Coding (non-PI) 552 2.39
A DEU (NAS) 5’ UTR 3,354 14.51
A DEU (NAS) 3* UTR 2,501 10.82
A DEU (NAS) Processed transcript 500 2.16
A Background Coding (PI) 31,380 69.90
A Background Coding (non-PI) 1,812 4.04
A Background 5’ UTR 5,217 11.62
A Background 3’ UTR 5,000 11.14
A Background Processed transcript 1,482 3.30
B DEU (AS) Coding (PI) 2,959 14.88
B DEU (AS) Coding (non-PI) 5,158 25.94
B DEU (AS) 5’ UTR 2,120 10.66
B DEU (AS) 3* UTR 4,796 24.12
B DEU (AS) Processed transcript 4,849 24.39
B DEU (NAS) Coding (PI) 27,079 66.92
B DEU (NAS) Coding (non-PI) 882 2.18
B DEU (NAS) 5’ UTR 5,095 12.59
B DEU (NAS) 3’ UTR 6,551 16.19
B DEU (NAS) Processed transcript 857 2.12
B Background Coding (PI) 49,680 69.12
B Background Coding (non-PI) 3,021 4.20
B Background 5’ UTR 7,819 10.88
B Background 3’ UTR 8,609 11.98
B Background Processed transcript 2,748 3.82
C DEU (AS) Coding (PI) 1,515 17.11
C DEU (AS) Coding (non-PI) 2,387 26.96
C DEU (AS) 5’ UTR 963 10.88
C DEU (AS) 3’ UTR 1,941 21.92
C DEU (AS) Processed transcript 2,049 23.14
C DEU (NAS) Coding (PI) 10,019 64.55
C DEU (NAS) Coding (non-PI) 426 2.74
C DEU (NAS) 5’ UTR 2,029 13.07
C DEU (NAS) 3* UTR 2,619 16.87
C DEU (NAS) Processed transcript 429 2.76
C Background Coding (PI) 19,765 68.09
C Background Coding (non-PI) 1,373 4.73
C Background 5’ UTR 3,298 11.36
C Background 3’ UTR 3,389 11.67
C Background Processed transcript 1,204 4.15

Table S8: Classification of exonic regions according to their usage across tissues and
to transcript isoform annotations. The first column indicates the GTEx subset. The
second column indicates exonic region classifications according to whether (a) they
were detected to be differentially used and had a mean larger than ten of normalized
reads supporting their alternative splicing [DEU (AS)], (b) they were differentially used
and had a mean smaller than 1 of normalized read supporting their alternative splicing
[DEU (NAS)], or (c) they were part of the background matched for expression strength
and width [background]. The third column shows the exonic region classes according
to transcript isoform annotations. The fourth column shows the number of exonic
regions in each exon class. The fifth column shows, for each usage category on each

data subset, the percentage exonic regions in each genomic class.
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