Table S1

<table>
<thead>
<tr>
<th>Protein</th>
<th>Source</th>
<th>Motif 1</th>
<th>p-value L</th>
<th>Motif 2</th>
<th>p-value L</th>
<th>Motif 3</th>
<th>p-value L</th>
<th>In vivo Motif</th>
<th>Structure Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIG4G2</td>
<td>eCLIP</td>
<td>ENCODE</td>
<td>2.00e-308</td>
<td></td>
<td>2.75e-308</td>
<td></td>
<td>1E-282</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K562-01</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELAV1</td>
<td>PARCLIP</td>
<td>doRiNa</td>
<td>6.78E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>single stranded</td>
</tr>
<tr>
<td></td>
<td>HEK293</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWSR1</td>
<td>PARCLIP</td>
<td>CLIPdb</td>
<td>8.78E-30</td>
<td></td>
<td>2.34E-23</td>
<td></td>
<td>2.69E-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEK293-01</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIP1L1</td>
<td>PARCLIP</td>
<td>CLIPdb</td>
<td>5.35E-74</td>
<td></td>
<td>1.57E-63</td>
<td></td>
<td>4.5E-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEK293</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMR1</td>
<td>PARCLIP</td>
<td>doRiNa</td>
<td>2E-213</td>
<td></td>
<td>1.4E-174</td>
<td></td>
<td>2.6E-151</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEK293</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUBP3</td>
<td>eCLIP</td>
<td>ENCODE</td>
<td>9.4E-133</td>
<td></td>
<td>1.3E-102</td>
<td></td>
<td>1.12E-96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K562-01</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUS</td>
<td>PARCLIP</td>
<td>CLIPdb</td>
<td>1.24E-53</td>
<td></td>
<td>1.92E-41</td>
<td></td>
<td>7.43E-38</td>
<td>SELEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEK293</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Method</td>
<td>Cell Line</td>
<td>ENCODE</td>
<td>Rank 1</td>
<td>Rank 2</td>
<td>Rank 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
<td>3.54E-56</td>
<td>3.23E-53</td>
<td>9.56E-51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>HeLa</td>
<td>h19</td>
<td>3.6E-06</td>
<td>3.86E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
<td>1.1E-232</td>
<td>9.5E-153</td>
<td>1.57E-43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
<td>2.9E-156</td>
<td>2.9E-146</td>
<td>2.1E-113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
<td>3.73E-96</td>
<td>4.49E-93</td>
<td>4.33E-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>h38</td>
<td>3.37E-68</td>
<td>3.8E-56</td>
<td>8.32E-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
<td>2.01E-54</td>
<td>1.22E-50</td>
<td>5.31E-47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Method</td>
<td>Cell Line</td>
<td>ENCODE</td>
<td>eCLIP K562-01 h38</td>
<td>PARCLIP HEK293 h19</td>
<td>CLIPdb</td>
<td>eCLIP K562-02 h38</td>
<td>PARCLIP HEK293 h19</td>
<td>ENCODE</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>hnRNPU</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>ENCODE</td>
<td>1E-127</td>
<td>5</td>
<td>2.2E-115</td>
<td>6</td>
<td>4.3E-115</td>
<td>7</td>
</tr>
<tr>
<td>IGF2BP1</td>
<td>PARCLIP</td>
<td>HEK293</td>
<td>CLIPdb</td>
<td>5.42E-59</td>
<td>7</td>
<td>6.14E-44</td>
<td>5</td>
<td>3.58E-29</td>
<td>6</td>
</tr>
<tr>
<td>IGF2BP2</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>ENCODE</td>
<td>2.13E-67</td>
<td>5</td>
<td>6.81E-53</td>
<td>7</td>
<td>2.33E-42</td>
<td>6</td>
</tr>
<tr>
<td>IGF2BP2</td>
<td>PARCLIP</td>
<td>HEK293</td>
<td>CLIPdb</td>
<td>1.78E-95</td>
<td>6</td>
<td>4.33E-87</td>
<td>7</td>
<td>2.39E-58</td>
<td>5</td>
</tr>
<tr>
<td>IGF2BP3</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>ENCODE</td>
<td>4.4E-138</td>
<td>7</td>
<td>1.4E-133</td>
<td>5</td>
<td>5E-129</td>
<td>6</td>
</tr>
<tr>
<td>IGF2BP3</td>
<td>PARCLIP</td>
<td>HEK293</td>
<td>CLIPdb</td>
<td>2.94E-97</td>
<td>7</td>
<td>9.36E-97</td>
<td>6</td>
<td>6.28E-96</td>
<td>5</td>
</tr>
<tr>
<td>KHDRBS1</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>ENCODE</td>
<td>1.5E-142</td>
<td>7</td>
<td>3.7E-126</td>
<td>6</td>
<td>3.9E-119</td>
<td>5</td>
</tr>
<tr>
<td>KHSRP</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>ENCODE</td>
<td>2.00e-308</td>
<td>7</td>
<td>7.2E-305</td>
<td>6</td>
<td>1E-296</td>
<td>5</td>
</tr>
<tr>
<td>PCBP2</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>ENCODE</td>
<td>2.00e-308</td>
<td>5</td>
<td>2.00e-308</td>
<td>7</td>
<td>2.00e-308</td>
<td>6</td>
</tr>
<tr>
<td>Gene</td>
<td>Experiment/Cell Line</td>
<td>ENCODE</td>
<td>Strand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTB1</td>
<td>eCLIP HepG2-01 h38</td>
<td>2.00e-308</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PTB1</td>
<td>eCLIP K562-01 h38</td>
<td>2.00e-308</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PUM2</td>
<td>PARCLIP HEK293 h19</td>
<td>1.09E-22</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doRiNa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.39E-19</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1E-16</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PUM2</td>
<td>eCLIP K562-02 h38</td>
<td>1E-261</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4E-210</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1E-205</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>QKI</td>
<td>PARCLIP HEK293 h19</td>
<td>2.00e-308</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1E-289</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2E-267</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>QKI</td>
<td>eCLIP K562-01 h38</td>
<td>2.00e-308</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00e-308</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RBFOX2</td>
<td>eCLIP HepG2-02 h38</td>
<td>1.1E-175</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5E-163</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3E-158</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RBFOX2</td>
<td>eCLIP K562-02 h38</td>
<td>7.5E-101</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.29E-70</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.69E-68</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SLBP</td>
<td>eCLIP K562-01 h38</td>
<td>1.6E-39</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.11E-36</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.38E-33</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAAGgcuUUUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from SOLVED STRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SRSF1</td>
<td>eCLIP HepG2-02 h38</td>
<td>2E-88</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.43E-84</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.08E-80</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>single stranded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Technology</td>
<td>Dataset</td>
<td>p-value</td>
<td>score</td>
<td>Rank</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSF1</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>9.9E-137</td>
<td>4</td>
<td>7.6E-117</td>
<td>1.5E-102</td>
<td>single stranded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENCODE</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSF1</td>
<td>HITSCLIP</td>
<td>MEF mm9</td>
<td>5.16E-32</td>
<td>4</td>
<td>8.13E-27</td>
<td>1.85E-16</td>
<td>SELEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doRiNa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSF2</td>
<td>HITSCLIP</td>
<td>MEF mm9</td>
<td>1.29E-36</td>
<td>4</td>
<td>7.78E-27</td>
<td>2.62E-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doRiNa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSF7</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>1.1E-165</td>
<td>5</td>
<td>2.1E-155</td>
<td>3.3E-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENCODE</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSF9</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>1.1E-107</td>
<td>6</td>
<td>2.1E-107</td>
<td>4.8E-107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENCODE</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF15</td>
<td>PARCLIP</td>
<td>HEK293-01</td>
<td>9.51E-12</td>
<td>7</td>
<td>2.68E-09</td>
<td>7.6E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLIPdb</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF15</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>3E-179</td>
<td>5</td>
<td>1.4E-175</td>
<td>2.1E-168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENCODE</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARDBP</td>
<td>iCLIP</td>
<td>SH-SYFy</td>
<td>1.8E-301</td>
<td>7</td>
<td>4.6E-276</td>
<td>6.9E-271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doRiNa</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARDBP</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>2.00e-308</td>
<td>5</td>
<td>2.00e-308</td>
<td>2.00e-308</td>
<td>NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENCODE</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>iCLIP</td>
<td>HeLa</td>
<td>6.9E-21</td>
<td>7</td>
<td>3.64E-15</td>
<td>3.67E-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doRiNa</td>
<td>h19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.8E-194</td>
<td>5</td>
<td>2.3E-106</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3E-105</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRA2A</td>
<td>eCLIP</td>
<td>K562</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7E-220</td>
<td>6</td>
<td>2.7E-215</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7E-213</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2AF2</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5E-110</td>
<td>5</td>
<td>7.03E-98</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.11E-66</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2AF2</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.31E-55</td>
<td>4</td>
<td>8.98E-54</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.05E-53</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In-vivo motifs were extracted from CISBP-RNA http://cisbp-rna.ccbr.utoronto.ca/ or from AtTRACT http://attract.cnic.es.

** Structure information was extracted from RNAcompete-S (Cook et al., 2017)
<table>
<thead>
<tr>
<th>RBP+source</th>
<th>SMARTIV *</th>
<th>RBPMotif</th>
<th>GraphProt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq+Struct</td>
<td>Seq</td>
<td>Struct</td>
<td>Seq</td>
</tr>
<tr>
<td>EIF4G2</td>
<td>eCLIP</td>
<td>K562_01</td>
<td>hg38</td>
</tr>
<tr>
<td>EWSR1</td>
<td>eCLIP</td>
<td>K562_01</td>
<td>hg38</td>
</tr>
<tr>
<td>FUBP3</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>h38</td>
</tr>
<tr>
<td>hnRNPA1</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
</tr>
<tr>
<td>hnRNPM</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
</tr>
<tr>
<td>KHSRP</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>h38</td>
</tr>
<tr>
<td>Protein</td>
<td>Assay</td>
<td>Cell Line</td>
<td>Timepoint</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PTB1</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
</tr>
<tr>
<td>PUM2</td>
<td>PARCLIP</td>
<td>HEK293</td>
<td>h19</td>
</tr>
<tr>
<td>QKI</td>
<td>PARCLIP</td>
<td>HEK293</td>
<td>h19</td>
</tr>
<tr>
<td>RBFOX</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>h38</td>
</tr>
<tr>
<td>SRSF1</td>
<td>eCLIP</td>
<td>HepG2-01</td>
<td>h38</td>
</tr>
<tr>
<td>SRSF7</td>
<td>eCLIP</td>
<td>K562-02</td>
<td>h38</td>
</tr>
<tr>
<td>TAF15</td>
<td>eCLIP</td>
<td>HepG2-02</td>
<td>h38</td>
</tr>
<tr>
<td>TARDB</td>
<td>eCLIP</td>
<td>K562-01</td>
<td>h38</td>
</tr>
<tr>
<td>Protein</td>
<td>eCLIP Cell Line</td>
<td>SMARTIV Run</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>K562-02 h38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2AF2</td>
<td>HepG2-02 h38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For comparison SMARTIV was run on a 1000 sequence on the top of the list and 1000 on the bottom.
Supplementary Table S3

<table>
<thead>
<tr>
<th></th>
<th>EIF4G2 K562-01 eCLIP</th>
<th>PUM2 K562-02 eCLIP</th>
<th>RBFOX2 HepG2-02 eCLIP</th>
<th>SLBP K562-01 eCLIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K5</td>
<td>K7</td>
<td>K5</td>
<td>K7</td>
</tr>
<tr>
<td>MFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.75e-308</td>
<td>1.07E-205</td>
<td>4.45E-163</td>
<td>1.32E-158</td>
</tr>
<tr>
<td>Centroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.52E-285</td>
<td>8.46E-166</td>
<td>4.82E-128</td>
<td>1.6E-39</td>
</tr>
<tr>
<td>MEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4E-293</td>
<td>7.89E-175</td>
<td>1.1E-144</td>
<td>5.54E-39</td>
</tr>
<tr>
<td>RNAshapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00e-308</td>
<td>7.22E-179</td>
<td>1.12E-164</td>
<td>2.47E-49</td>
</tr>
</tbody>
</table>

Note: Images of RNA structures and numerical data are included for each condition.
Supplementary Figure S1: SMARTIV vs RBPmotif runtimes

SMARTIV and RBPmotifs were tested on 16 different dataset (as detailed in Supplementary Table S2) using default parameters. For comparison with RBPmotifs, we run both SMARTIV and RBPmotifs on 2000 sequences per each dataset (top 1000 and bottom 1000 sequences extracted from the ranked sequence list). As shown SMARTIV run time is between 30 second to 3 minutes, depending on the total sequence length and the GC content of the sequences. RBPmotif runtime was usually 5 to 10 fold slower.