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Supplementary Information 

Data Collection 
The genes’ coordinates used in the training phase were taken from the GRCh37/hg19 assembly (Church et 

al. 2011). The data was downloaded from the UCSC Genome Browser (Haeussler et al. 2019) from the 

following URL: https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz. 

Build version 37 of the assembly was used to match the genome coordinates in the methylation probes 

manifest file. 

The methylation data we used was measured using Infinium HumanMethylation450 v1.2 BeadChip by 

Illumina. The genome mapping information of the methylation probes was downloaded from Illumina’s 

website (ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/ProductFiles/

HumanMethylation450/HumanMethylation450_15017482_v1-2.csv). 

The TCGA data was downloaded using the TCGA-Assembler software (Wei et al. 2018; Zhu, Qiu, and Ji 

2014). The DNA methylation data was downloaded using the ‘DownloadMethylationData’ function. The 

RNA-seq data was downloaded with the ‘DownloadRNASeqData’ function, setting the ‘assayPlatform’ 

parameter to ‘gene.normalized_RNAseq’. 

The additional LUAD dataset (Chen et al. 2020) was downloaded from OncoSG, the Singapore Oncology 

Data Portal (https://src.gisapps.org/OncoSG/), under ‘Lung Adenocarcinoma (GIS, 2019)’. 

 

 

Correspondence information between features  
Some of the tested multi-omic integration algorithms require correspondence information between the 

features across omics. LIGER and Seurat assume that the input matrices to be integrated share the same 

set of features. When these methods were previously used to integrate scRNA-seq and methylation (LIGER) 

or scATAC-seq (Seurat) data, the input from the latter omic was converted to a matrix with gene-level 

features. The new features were expected to correspond to the GE features. 

To summarize gene-level methylation, we used the annotations of methylation sites into six possible 

regions: TSS1500 (201-1500 bps upstream of the transcription start site(TSS)), TSS200 (0-200 bps upstream 

of the TSS), 5’UTR (untranslated region), 1stExon, Body, and 3’UTR. The HumanMethylation450 BeadChip 

annotations were taken from Ilumina (https://support.illumina.com/downloads/humanmethylation450

_15017482_v1-2_product_files.html). Of those, we used the sites in the TSS1500, TSS200, 5’UTR and 

1stExon regions. We chose these regions as they showed anticorrelation with GE on the TCGA data 

(Supplementary Figure 4). This matched previous reports on anti-correlation between DM levels in the 

promoter region and the gene’s expression level (Deaton and Bird 2011). The final gene-level summary was 

minus the average methylation signal in those regions. 

 

 

Overview of the Methods Used 

LIGER 

LIGER (Welch et al. 2019) takes as input multiple single-cell datasets, either scRNA-seq experiments or 

multi-omic measurements. In the latter case, LIGER takes as input the preprocessed datasets after 

https://hgdownload.soe.ucsc.edu/‌goldenPath/‌hg19/‌bigZips/‌genes/‌hg19.refGene.gtf.gz
ftp://webdata2:webdata2@ussd-ftp.illumina.com/‌downloads/‌ProductFiles/‌HumanMethylation450/‌HumanMethylation450_15017482_v1-2.csv
ftp://webdata2:webdata2@ussd-ftp.illumina.com/‌downloads/‌ProductFiles/‌HumanMethylation450/‌HumanMethylation450_15017482_v1-2.csv
https://src.gisapps.org/OncoSG/
https://support.illumina.com/downloads/‌humanmethylation450‌_15017482_v1-2_product_files.html
https://support.illumina.com/downloads/‌humanmethylation450‌_15017482_v1-2_product_files.html
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conversion to a shared gene-level feature space. When LIGER is used to integrate gene expression with 

methylation data from mouse frontal cortical neurons, the methylation data is first converted to gene-level 

methylation features (non-CpG gene body methylation). The direction of the methylation signal is reversed 

to incorporate the assumption of general anti-correlation with gene expression in neurons (Mo et al. 2015). 

LIGER then employs integrative non-negative matrix factorization to create for each matrix a dataset-

specific factor plus a shared factor across the datasets. The shared factor is used to jointly embed cells in a 

common low-dimensional space. 

Seurat v3 

The Seurat v3 algorithm (Stuart et al. 2019) was designed to integrate multiple scRNA-seq datasets in the 

SO/MD setting, but was also demonstrated to integrate scATAC-seq and scRNA-seq data in the MO/MD 

setting. The first step of such integration is similar to LIGER. The scATAC-seq data is converted to a gene-

activity matrix, based on the accessibility of sites proximal to the gene’s transcription start site (Pliner et 

al. 2018). The gene activity matrix has the same feature set as the scRNA-seq matrices and it is assumed to 

be correlated with them. Seurat first uses canonical-correlation analysis to jointly reduce the dimension of 

the two datasets to a shared space. Then it identifies mutual nearest neighbors across the datasets. The 

pairings found are termed “anchors”. These anchor pairs are scored based on the consistency of anchors 

across the neighborhood structure of each dataset. The scored anchors are utilized to compute a projection 

mapping for each cell to embed it in the shared space. 

JLMA 

The joint Laplacian manifold alignment (JLMA) algorithm (C. Wang and Mahadevan 2008) learns a 

projection that maps datasets from two different feature spaces to a shared lower-dimensional space. This 

is done while simultaneously preserving the neighborhood relationships in each set and matching the local 

geometry of samples from the two sets. JLMA constructs a joint Laplacian matrix across the two domains, 

which captures the similarities within each dataset and the similarities across the datasets. The similarities 

across the datasets can be given as input to the algorithm (in a semi-supervised manner) or computed by 

the algorithm according to matching between the local geometry of the samples. In the latter case, JLMA 

does not require any correspondence information. The local geometry measure is computed based on the 

𝑘-NN graph of each dataset. Finding the local geometry matching is computationally expensive even for 

small values of 𝑘, as it runs in 𝑂(𝑘!) time. After the joint Laplacian is computed, the optimal solution is 

found by solving a generalized eigenvalue decomposition problem. 

MMD-MA 

The maximum mean discrepancy-manifold alignment (MMD-MA) algorithm (Liu et al. 2019) is an 

unsupervised manifold alignment algorithm. It was created specifically for the task of single-cell multi-

omics integration. The algorithm assumes the samples from the different omic datasets are drawn from 

the same initial population, but it does not require any correspondence information between the 

samples or the features. MMD-MA seeks an optimal alignment by minimizing an objective function with 

three terms. The first is the maximum mean discrepancy, which corresponds to the distance between the 

two mapped manifolds in the shared space. The second term, named distortion, measures relationships 

among data points between the original space and the shared latent space. The third is a penalty term 

that is intended to avoid a collapse to a trivial solution. 

 

Benchmark Methods and Software 
All experiments ran on R-4.0.1 (and python 3.8.0 for MMD-MA). For all methods, we followed the usage 

guidelines supplied by the creators. The preprocessing steps described in section 2.2.3 were applied to 

the input GE and DM data for all algorithms used in the benchmark. 



3 
 

LIGER 

Implementation: We used the ‘rliger’ R package, version 0.5.0. The methods referred to in the 

following subsection were supplied by this package. We followed LIGER guidelines for integrating GE and 

DM data (https://welch-lab.github.io/liger/rna-methylation.html). 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to the input GE 

and DM matrices. The aggregated gene-level methylation (described above in this supplement) was used 

as the methylation input for LIGER. The GE data was normalized and scaled using the normalize and 

scaleNotCenter methods. The DM input was not normalized and scaled as suggested by the guidelines. 

Feature selection: The genes were selected using the selectGenes method when considering only the 

GE data, as suggested by the guidelines. This method selects the variable genes by comparing the variance 

of each gene’s expression to its mean expression. 

Execution details: The default settings were used in the factorization and quantile normalizations phases 

of LIGER. As suggested by the guidelines, the quantileAlignSNF method was used with center=T, 

considering the density of the methylation data. The factorization was done with k (the number of factors) 

between 2 and 40, resulting in data projections in 2 to 40 dimensions. 

Seurat v3 

Implementation: We used the ‘Seurat’ R package, version 3.2.3. The methods referred to in the 

following subsection were supplied by this package. We followed Seurat guidelines for integration and label 

transfer (https://satijalab.org/seurat/archive/v3.2/integration.html). 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to the input GE 

and DM matrices. The aggregated gene-level methylation (described above in this supplement) was used 

as the methylation input for Seurat. The GE data was normalized using the NormalizeData method with 

the relative count normalization method. This step is not documented in the guidelines but empirically 

improved the results in all tested cases. 

Feature selection: The genes were selected using the FindVariableFeatures method with the 

default parameters and selection method. 

Execution details: The default settings were used. In the step of identifying anchors (using 

FindIntegrationAnchors), we used 30 neighbors when filtering the anchors (k.filter=30). We 

ran the algorithm with all possible dimensions between 2 and 40. 

JLMA 

Implementation: We used our implementation based on the JLMA paper, as we didn’t find an R package 

implementing JLMA. The implementation code is part of the INTEND project on GitHub. 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to the input GE 

and DM matrices. The aggregated gene-level methylation (described above in this supplement) was used 

as the methylation input for JLMA. 

Feature selection: We selected the 𝑛 genes with the highest variance in expression for 𝑛 = 500 and 2000 

(the algorithm ran in two variants). We scaled the inputs such that each feature (gene) had zero mean and 

unit variance. 

Execution details: As mentioned in subsection 2.2.4, we computed the cross-omic similarity matrix for 

JLMA based on the aggregated gene-level methylation matrix. We used the hyper-parameter 𝜇 = 1. 

https://welch-lab.github.io/liger/rna-methylation.html
https://satijalab.org/seurat/archive/v3.2/integration.html
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MMD-MA 

Implementation: The algorithm’s source code was downloaded from 

https://noble.gs.washington.edu/proj/mmd-ma/. We made minor changes in the source code to allow us 

to run the algorithm for the desired dimensions. 

Preprocessing: No further preprocessing (except the steps described in 2.2.3) was applied to the input GE 

and DM matrices. As mentioned in subsection 2.2.4, we ran MMD-MA with both the original methylation 

data and the aggregated gene-level methylation (described above in this supplement) as inputs. 

Feature selection: When using the original methylation data, no feature selection method was applied 

before computing the inter-similarity matrices for the GE and DM inputs. When running MMD-MA with 

the gene-level methylation data, we selected the 𝑛 genes with the highest variance in expression for 𝑛 =

500 and 2000 (the algorithm ran in two variants). In this case, we scaled the inputs such that each feature 

(gene) had zero mean and unit variance. 

Execution details: We ran MMD-MA with dimensions 2,10,20,30, 40. We did not run it for all possible 

dimensions between 2 and 40 due to long running times. 

INTEND algorithm 
Here is a  complete mathematical  explanation of the two phases described in section 2.1 in the main 

paper.  

The training phase 
The preliminary training phase aims to learn connections between GE and DM using training data. Its inputs 

are expression and methylation profiles for the same set of 𝑛 samples. 𝐸𝑡𝑟𝑎𝑖𝑛 is an |𝑓𝐸| × 𝑛 expression 

matrix, where 𝑓𝐸 is the set of genes for which the expression was measured. The methylation matrix 𝑀𝑡𝑟𝑎𝑖𝑛 

has dimensions |𝑓𝑀| × 𝑛, where 𝑓𝑀 is the set of measured methylation sites. The goal is to determine a 

function 𝑝(𝑔) for every gene 𝑔, that predicts the expression level of 𝑔 based on the methylation levels of 

potentially relevant sites. Let 𝑓𝑀
(𝑔)

⊆ 𝑓𝑀 be the set of relevant sites (its creation is described below). For a 

methylation profile 𝑚(𝑔) ∈ ℝ|𝑓𝑀
(𝑔)

|, we seek a function 𝑝(𝑔): ℝ|𝑓𝑀
(𝑔)

| ⟶ ℝ, s.t. 𝑝(𝑔)(𝑚(𝑔)) is the predicted 

expression level of 𝑔. 

Model 

For each 𝑔 ∈ 𝑓𝐸  we set 𝑓𝑀
(𝑔)

 to be all the probed methylation sites in the range [𝐶5′-end − 10kb, 𝐶3′-end +

10kb], where 𝐶5′-end and 𝐶3′-end are the coordinates of 𝑔’s 5′-end and 3′-end on the chromosome, 

respectively. The size of 𝑓𝑀
(𝑔)

 may vary due to the variability in gene length and the assay’s coverage. Genes 

that had less than two measured methylation sites were removed from the model. Let 𝑓𝑀 = ⋃ 𝑓𝑀
(𝑔)

 the 

union of the used methylation sites for all genes. 

For each 𝑔, after obtaining 𝑓𝑀
(𝑔)

, INTEND uses Lasso regression model to learn the prediction function 𝑝(𝑔) 

and select model features. Lasso was run using the glmnet R package and the optimal value of the penalty 

constant was chosen using 10-fold cross-validation on the training set. After calculating 𝑝(𝑔) for every 𝑔 in 

every training sample, the 2000 genes with the highest 𝑅2 between predicted and observed gene 

expression are identified for use in the next stages of INTEND.  

The embedding phase 
The inputs for the main phase of the algorithm are: 

1. A DM matrix 𝑀, for one target set of samples (T1), of dimensions |𝑓𝑀| × 𝑛𝑀 

2. A GE matrix 𝐸 for a second, disjoint target set of samples (T2), of dimension |𝑓𝐸| × 𝑛𝐸 

https://noble.gs.washington.edu/proj/mmd-ma/
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3. A desired dimension 𝑑 for the shared space 

Additionally, the prediction functions 𝑝(𝑔) for each 𝑔 from the preliminary step are used. The requested 

output is a 𝑑 × (𝑛𝑀 + 𝑛𝐸) matrix denoted 𝑆, which contains the projections of the input and predicted 

expression profiles into the shared 𝑑-dimensional space. The phase has three steps: 

Step 1: Gene expression prediction using methylation data 

Let 𝑝(𝑔) be the learned prediction function for gene 𝑔 and let  𝑚1, 𝑚2, … , 𝑚𝑛𝑀
 be the methylation profiles 

in 𝑀. Recall that 𝑚𝑖
(𝑔)

 describes the methylation levels of 𝑚𝑖 in 𝑓𝑀
(𝑔)

 (possibly with some coefficients zeroed 

by the Lasso process). We apply 𝑝(𝑔) on 𝑚𝑖
(𝑔)

and get the predicted expression 𝑒𝑖
(𝑔)

. We denote the 

predicted expression profile for 𝑚𝑖 as 𝑒𝑖 = {𝑒𝑖
(𝑔)

 | 𝑔 ∈ 𝑓𝐸}. This step results in the predicted expression 

matrix 𝑃 = (𝑒1, 𝑒2, … , 𝑒𝑛𝑀
). 

Step 2: Selecting genes 
Denote the 2000 genes selected in the training phase by 𝐺𝑅. Let 𝐺𝐸  denote the 2000 genes with the highest 

expression variability in 𝐸. Let 𝐺𝑃 denote the 2000 genes with the highest variance in the predicted 

expression 𝑃. We select the following genes from 𝐸 and 𝑃: 

The resulting matrices are 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

,  with dimensions |𝐺𝑠| × 𝑛𝐸 and |𝐺𝑠| × 𝑛𝑀 respectively. The size of 

𝐺𝑠 varies depending on the training and target datasets. Finally, each row of 𝐸𝐺𝑠
 and 𝑃𝐺𝑠

 is centered and 

scaled separately so that each feature has zero mean expression level and unit variance. 

Step 3: Embedding 
The last step applies CCA to 𝐸𝐺𝑠

 and 𝑃𝐺𝑠
, and produces the integrated matrix 𝑆. CCA is a dimension reduction 

method that finds linear combinations of features across datasets such that these combinations have 

maximum correlation (37).  

Let us denote 𝑋 = 𝐸𝐺𝑠
∈ ℝ |𝐺𝑠|×𝑛𝐸 and 𝑌 = 𝑃𝐺𝑠

∈ ℝ|𝐺𝑠|×𝑛𝑀. Let 𝑑 ≤ min (𝑛𝐸 , 𝑛𝑀). CCA aims to find 

canonical correlation vectors 𝑢1, … 𝑢𝑑 , 𝑣1, … , 𝑣𝑑 such that the correlations between the projections 𝑋𝑢𝑖 

and 𝑌𝑣𝑖 are maximized, under the constraint that  𝑋𝑢𝑖 is uncorrelated with 𝑋𝑢𝑗  for 𝑗 < 𝑖 and the same for 

𝑌𝑣𝑖 and 𝑌𝑣𝑗 . To get the first pair of canonical correlation vectors, the following optimization problem 

should be solved: 

When |𝐺𝑠| is smaller than the number of samples 𝑛𝐸 and/or 𝑛𝑀, the solution for 𝑢1, 𝑣1 is not unique. To 

overcome this, as proposed in Butler et al., the covariance matrix within each dataset is treated as if it were 

diagonal, resulting in the following problem: 

We scale and center the columns of 𝑋 and 𝑌 to have a mean of 0 and variance of 1 (in the previous step 

the same process was applied to the rows). The problem can be solved using Lagrange multipliers, as 

described in the following subsection. 

CCA optimization problem solution 
To solve the optimization problem in equation (3), we use the Lagrange multipliers method. We denote 

𝐾 = 𝑋𝑇𝑌. Let: 

 𝐺𝑠 = 𝐺𝑅⋂𝐺𝐸⋂𝐺𝑃 (1) 

 (𝑢1, 𝑣1) = argmax
𝑢∈ℝ𝑛𝐸  ,𝑣∈ℝ𝑛𝑀

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {𝑢𝑇𝑋𝑇𝑋𝑢 = 1
𝑣𝑇𝑌𝑇𝑌𝑣 = 1

 (2) 

 (𝑢1, 𝑣1) = argmax
𝑢,𝑣

𝑢𝑇𝑋𝑇𝑌𝑣 𝑠. 𝑡 {
‖𝑢‖2

2 = 1

‖𝑣‖2
2 = 1

 (3) 
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Differentiating 𝐿 with respect to 𝑢 and 𝑣 gives: 

Left-multiplying (6) and (7) by 𝑢𝑇 and 𝑣𝑇 respectively, and using the constraints ‖𝑢‖2
2 = 1 and ‖𝑣‖2

2 = 1: 

Thus 𝑢 and 𝑣 are the left and right unit singular vectors of 𝐾 with singular value 𝜆 = 𝜆1 = 𝜆2. Since the 

objective is to maximize 𝑢𝑇𝐾𝑣, then 𝑢1, 𝑣1 are the left and right unit singular vectors of 𝐾 with the greatest 

singular value. We claim that ∀𝑖 ∈ {1, … , 𝑑}, 𝑢𝑖 and 𝑣𝑖 are the left and right unit singular vectors of 𝐾 with 

the 𝑖𝑡ℎ greatest singular value. Let 𝑢𝑖 and 𝑣𝑖 be the 𝑖𝑡ℎ unit singular vectors of 𝐾. Then we showed that 

(𝑢𝑖 , 𝑣𝑖) maximizes over all 𝑢 ∈ ℝ𝑛𝐸  , 𝑣 ∈ ℝ𝑛𝑀, the correlation between 𝑋𝑢 and 𝑌𝑣. As 𝑢𝑖
𝑇𝑢𝑗 = 𝑣𝑖

𝑇𝑣𝑗 = 0 

for 𝑗 < 𝑖, and we assumed that 𝑋𝑇𝑋 and 𝑌𝑇𝑌 are diagonal, then 𝐶𝑜𝑟(𝑋𝑢𝑖 , 𝑋𝑢𝑗) = 𝐶𝑜𝑟(𝑌𝑣𝑖 , 𝑌𝑣𝑗) = 0 for 

𝑗 < 𝑖. Hence the optimal canonical-correlation vectors can be obtained by SVD of 𝐾 = 𝑋𝑇𝑌. We denote 

𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑑) ∈ ℝ𝑛𝐸×𝑑 and 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑑) ∈ ℝ𝑛𝑀×𝑑 where 𝑢𝑖  𝑎𝑛𝑑 𝑣𝑖 are the 𝑖-th left and right 

singular vectors, respectively. The output of this step is the matrix 𝑆 = [𝑈𝑇 𝑉𝑇], of dimensions 

𝑑 × (𝑛𝐸 + 𝑛𝑀), containing the embeddings of samples from both target sets in the shared 𝑑-dimensional 

space. 

 

𝐿 = 𝑢𝑇𝐾𝑣 −
𝜆1

2
(𝑢𝑇𝑢 − 1) −

𝜆2

2
(𝑣𝑇𝑣 − 1) (5) 

𝛿𝐿

𝛿𝑢
= 𝐾𝑣 − 𝜆1𝑢 = 0 →  𝐾𝑣 = 𝜆1𝑢 (6) 

𝛿𝐿

𝛿𝑣
= 𝐾𝑇𝑢 − 𝜆2𝑣 = 0 → 𝐾𝑇𝑢 = 𝜆2𝑣 (7) 

𝜆1 = 𝑢𝑇𝐾𝑣 = 𝑣𝑇𝐾𝑇𝑢 = 𝜆2 (8) 
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Supplementary Tables 
Supplementary Table 1. Number of features and samples in each TCGA dataset before and after the handling of 
missing values 

Dataset 

Number of samples Number of features 

Gene 

expression 

DNA 

methylation 

Gene 

expression 

DNA 

methylation 

Before After Before After Before After Before After 

AML 173 173 194 194 20530 20530 526729 432429 

BLCA 427 427 440 440 20530 20530 526729 431716 

COAD 328 328 353 353 20530 20530 526729 431308 

LGG 534 534 534 534 20530 20530 526729 431991 

LIHC 424 424 430 430 20530 20530 526729 430791 

LUAD 576 576 507 507 20530 20530 526729 431486 

PAAD 183 183 195 195 20530 20530 526729 428806 

PRAD 550 550 553 553 20530 20530 526729 432201 

SARC 265 265 269 269 20530 20530 526729 428486 

SKCM 473 473 475 475 20530 20530 526729 430579 

THCA 572 572 571 571 20530 20530 526729 432307 

 

Supplementary Table 2. Average FOSCTTM score for INTEND with and without applying CCA at the end of the 
embedding phase. When running with CCA the requested shared space dimension 𝒅 ranges from 2 to 40, and 
the presented score is the best across all values of 𝒅. The optimal 𝒅 is written in parentheses. When running 
without CCA the dimension is the size of the selected gene set. The set size is written in parentheses.  

Dataset INTEND – with CCA INTEND – without CCA 

AML 2.416 (25) 5.184 (191) 

BLCA 0.040 (39) 0.857 (362) 

COAD 0.025 (37) 1.361 (297) 

LGG 6.815 (22) 10.072 (222) 

LIHC 0.139 (36) 1.088 (339) 

LUAD 0.062 (32) 0.892 (359) 

PAAD 0.546 (30) 4.781 (362) 

PRAD 0.374 (38) 1.843 (295) 

SARC 0.052 (35) 0.616 (382) 

SKCM 0.027 (39) 1.043 (379) 

THCA 3.073 (11) 5.849 (264) 
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Supplementary Table 3. Comparison of correlation extraction from LUAD dataset integration results. The 
procedure described in section 3.4.2 was repeated with the integration results of INTEND, LIGER, Seurat and 
MMD-MA. The number of mutual nearest neighbors used was 270, 142, 61, and 231, respectively. The analysis 
presented in the table included approx. 2.5 million gene-site pairs that had significant TCGA-observed 
correlation (p-value<0.01). We tested the percentage of these pairs that were detected with significant 
estimated correlation (p-value<0.01), the percentage of these pairs with the same correlation sign of estimated 

and TCGA-observed correlations, and the 𝑹𝟐 for the correlation between estimated and TCGA-observed 
correlations. 

Algorithm INTEND LIGER Seurat MMD-MA 

% of gene-site pairs with estimated significant 

correlation (p-value<0.01) 
20.17 3.78 5.12 17.45 

% of gene-site pairs with estimated and TCGA-

observed correlation with same correlation sign 
74.51 47.29 52.08 56.73 

𝑅2 for the correlation between estimated and 
TCGA-observed correlation 

0.374 0.015 0.003 0.061 

 

Supplementary Table 4. Top ten methylation sites with the strongest negative estimated correlations out of the 
964 sites in 1Mb range from TK1 

Methylation site 
Location on chromosome 17 

(build GRCh37/hg19) 

Correlation coefficient 

estimation 

cg11868461 75830800 -0.5181234 

cg06643271 76128170 -0.5016554 

cg24988684 76128556 -0.4887382 

cg10460946 76247467 -0.4631925 

cg11493223 76128522 -0.4516062 

cg02911077 76128621 -0.4396759 

cg18901278 76128531 -0.4280529 

cg04947157 76128481 -0.4135805 

cg03742808 76128634 -0.4130168 

cg05110391 76588634 -0.4063449 
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Supplementary Table 5. Effect of the size and diversity of the training set data on INTEND performance. 
The table shows average FOSCTTM score (percent) on four target cancer datasets. Training dataset #1 
includes seven cancer datasets: AML, BLCA, LGG, LUAD, PAAD, PRAD, and THCA. Training dataset #2 is 
different for each target dataset and includes ten cancer datasets, all eleven used in the study (AML, BLCA, 
COAD, LIHC, LGG, LUAD, PAAD, PRAD, SARC, SKCM and THCA), excluding the target dataset. 

 

Target 
Dataset 

FOSCTTM (%) 
Training 
dataset #1 

Training 
dataset #1 
size 
(7 datasets) 
  

FOSCTTM (%) 
Training 
dataset #2 

Training 
dataset #2 
size 
(10 
datasets) 

Ratio between 
FOSCTTM when 
trained on dataset 
#1 and when 
trained on dataset 
#2 

COAD 0.116 2881 0.043 4031 2.7 

LIHC 0.325 2881 0.152 3915 2.14 

SARC 0.144 2881 0.068 4066 2.11 

SKCM 0.150 2881 0.027 3856 5.43 

  

  



10 
 

Supplementary Figures 
 

 

Supplementary Figure 1 

Histogram of the number of methylation sites per gene. Average: 25.22, median: 19, interquantile range 

(𝐼𝑄𝑅): 12-30. The maximum number of methylation sites per gene was 1055 (outside the plot axis limits). 
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Supplementary Figure 2 

Histogram of the number of methylation sites per gene in the model after Lasso shrinkage on the TCGA 

data. The model was trained on ten cancer subtypes data from TCGA: AML, BLCA, COAD, LGG, LIHC, PAAD, 

PRAD, SARC, SKCM, and THCA. Average: 20.93, median: 16, interquantile range (𝐼𝑄𝑅): 10-26. The maximum 

number of methylation sites per gene was 424 (outside the plot axis limits). 

 

 

Supplementary Figure 3 

Histograms of 𝑅2 values between predicted and observed gene expression, when training on GE and DM 

data of 10 cancer subtypes from TCGA (the datasets listed in Table 1, excluding LUAD), covering 3852 tumor 

samples. (A) All 19143 genes, (B) The 2000 genes with the highest 𝑅2. 

A B 
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Supplementary Figure 4: Correlation between gene expression and DNA methylation levels in different 

genomic regions 

Correlations were measured for genes that had both expression and methylation data in the specified 

region of the gene. Data included samples from eleven cancer types from the TCGA database (Table 1). 

The horizontal line in each violin plot is the mean correlation for the region, and the black dashed line 

shows a correlation of zero. (A) Summary over all subtypes, (B) Results for each subtype separately. The 

mean correlation for TSS1500, TSS200, 5’UTR, and 1stExon is < −0.04 for every subtype, and < −0.065 

on average across subtypes. The Body regions exhibit a positive mean correlation for one subtype (BLCA), 

and 3’UTR for seven. 
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Supplementary Figure 5: Performance of the algorithms as a function of the projected dimension on eleven 
TCGA cancer datasets. Average FOSCTTM score versus the shared space dimension. The numbers 500 and 2000 
in parenthesis denote the number of selected genes in the WFCI runs of MMD-MA and JLMA. The results of 
MMD-MA include only 𝒅 = 𝟐, 𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, due to the long runtime of the algorithm. 
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Supplementary Figure 6. The integration of gene expression and DNA methylation samples from the COAD 
dataset – results for JLMA and MMD-MA algorithms 

(A) UMAP plots of the original data colored by omic. 
(B) UMAP plots of the original data. To appreciate concordance between omics, ten samples were 
randomly chosen, and their matching points in both omics are labeled and colored by omic. 
(C-J) UMAP plots of the samples after they were projected to a shared space by each algorithm, with a set 
of selected genes of size 500 and 2000. The samples are colored by omic (C-F) and the projection of the 
points from (B) are labeled in (G-J). 
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Supplementary Figures 7-16. Results of integration of GE and DM samples from all TCGA datasets listed in 
Table 1, excluding COAD. (A) UMAP plots of the original data.  (B) The same plots as in A. To appreciate 
concordance between omics, ten samples were randomly selected, and their matching points in both omics 
were labeled. (C-F) UMAP plots of the samples after they were projected to a shared space by each algorithm. 
(G-J) The same plots as in C-F with the selected points labeled.  In all plots colors correspond to omics. 
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Supplementary Figure 17. FOSCTTM scores of the integration of four cancer datasets: COAD, LIHC, SARC 
and SKCM, simultaneously, by INTEND, LIGER, Seurat v3, and MMD-MA. 
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Supplementary Figure 18. SKCM clustering 

(A) UMAP plots of each original omic data. 
(B) UMAP plot of INTEND sample projections into the shared space colored by omic 
(C) k-means clustering of the original DM samples with 𝑘 = 2, shown on the same plot as in (A). Samples 
are colored according to their clusters. 
(D) k-means clustering of the original GE samples with 𝑘 = 2, shown on the same plot as in (A). Samples 
are colored according to their clusters. 
(E) Integration-based clustering of the methylation sample embeddings into the shared space (EP, the pink 
points in (B)), shown on the same plot as in (B). Samples are colored according to their assigned cluster 
from (D). Each sample was assigned by majority voting to the cluster most represented among the five GE 
embeddings closest to its matching EP representation in the shared space. 
(F) The total within-cluster sum of squares versus the number of clusters, for clustering DM data. 
(G) The total within-cluster sum of squares versus the number of clusters, for clustering GE data. 
The points with the maximum curvature are highlighted in red. 

 


