Histone H1°: its location in chromatin

B.J. Smith and E.W. Johns

Institute of Cancer Research, Fulham Road, London SW3 6JB, UK

Received 30 September 1980

ABSTRACT

Histone H1° is an H5-like protein found in mammals. Its location in chromatin from animal tissues has been studied by micrococcal nuclease digestion and by quantification. It was found that H1° occurs in the linker region of chromatin, and replaces H1 there as it does so. As much as a third of the H1 becomes replaced, at least in some tissues. The abundance of H1° was similar in bulk chromatin and in a mononucleosome population which was putatively enriched in transcribed DNA sequences. It was concluded that H1° probably does not suppress transcription.

INTRODUCTION

Most, if not all eukaryotes possess histone H1. H1 is located on the linker region of chromatin, and has been implicated in the maintenance of compact conformations of chromatin, possibly by maintenance of linker DNA length (reviewed in refs 1 and 2). A protein similar to H1 in some respects, histone H5, is also found in the linker region of chromatin, but only in nucleated erythrocytes. The function of H5 has been suggested as being one of suppression of transcription (reviewed in ref. 4). It is generally held that when H5 occurs it replaces H1 (eg. refs 5 and 6) but Weintraub et al (7) have suggested that H5 is present in addition to the normal H1 content (of approximately one H1 molecule per nucleosome).

A protein which is like H1 in overall amino acid content but which has some structural homology with avian H5, is H1° (8). The function of this protein has been suggested as being suppression of cell replication (9) or of DNA synthesis (10). By analogy with H1 and H5, H1° may be expected to reside in the linker region of chromatin, perhaps replacing H1 when it does so. In the present work we test these expectations and investigate the association of H1° with the fraction of chromatin which is sensitive to brief digestion with micrococcal nuclease and which is reputed to be enriched in actively transcribing DNA sequences (11, 12).
METHODS

Preparation of nuclei and proteins

For nuclease digestion studies, tissue from 2-6 week-old calves was used, for reasons of quantity, and because bovine H1° was available as a standard. The tissue used was brain, since it has minimal endogenous proteolytic and nucleolytic activities\(^{14,15}\). Brains were obtained from a local abattoir, transported on ice. For quantitative studies the species used was changed to the laboratory mouse (strain CBA/Ca) to ensure freshness of tissue and so a minimum of proteolysis. Mice were killed immediately before use.

Nuclei were prepared from fresh tissue in the presence of protease inhibitor phenylmethylsulphonyl fluoride as described previously\(^{16}\). Proteins were prepared by thorough extraction of nuclei four times with HCl (0.25M) and by precipitation by addition of acetone (10 vol).

Digestion with nuclease

Freshly-prepared nuclei were suspended to 6-8 mg nucleic acid/ml in sucrose (0.3M), CaCl\(_2\) (1mM), tris (5mM) and cacodylic acid (to pH 7.3), and warmed to 37°C. Micrococcal nuclease (Worthington) was added to a concentration of 50 units/mg nucleic acid. In the case of controls, buffer was added instead of enzyme. Incubation at 37°C continued for 90 sec and then the reaction was stopped and nuclei lysed by cooling on ice, addition of diaminooetetraacetic acid (EDTA, to 1.5mM) and brief homogenization. Suspensions were then centrifuged (90,000 x g, 4°C, 30 min) to yield a supernatant which was suitable for electrophoresis, after dialysis (overnight, 4°C, against triethanolamine (2mM) EDTA (2mM) glycerol (10% v/v) and phenylmethylsulphonyl fluoride (0.5mM). The amounts of perchloric acid (5% w/v)-soluble nucleotides in suspensions of nuclei before and after treatment were estimated by absorbance at wavelength 260 nm. It was found that the treatment with micrococcal nuclease rendered approximately 1.5 - 3.0% of nucleic acids soluble in perchloric acid.

Electrophoresis

Deoxyribonucleoprotein particles were fractionated in "DNP" gels, of 5% acrylamide\(^{17}\), in slabs of 0.3 x 12 x 12 cm. Electrophoresis (at a constant voltage of 150 V) was continued with cooling until 30 min after the bromophenol blue dye front had emerged from the gel.

Proteins were analysed in "SDS" gels of 15% acrylamide and sodium dodecyl sulphate (0.1%)\(^{18}\), in 0.1 x 12 x 12 cm slabs. Electrophoresis (at a constant current of 20 mA) was continued with cooling until the bromophenol blue dye front reached the bottom of the gel.

DNA was analysed by electrophoresis in "DNA" gels of 4% acrylamide and
sodium dodecylsulphate (0.1%) in 0.3 x 12 x 12 cm slabs. Electrophoresis was continued at room temperature at a constant voltage of 20 V, until the bromophenol blue dye front had neared the bottom of the gel.

Two-dimensional gels were of two types: (a) DNP gel in the first dimension, SDS gel in the second; (b) DNP gel in the first dimension, DNA gel in the second. Strips from the first gel (DNP) were equilibrated in appropriate buffers before application to the top of the second gel.

Double stranded nucleic acid was stained with ethidium bromide after washing the gel with methanol/water (50/50, v/v) and visualized by irradiation with ultraviolet light. Proteins were visualized routinely by staining with Coomassie Brilliant Blue R250. However, we have found that this strain is unsatisfactory for quantitative staining of protein - it does not bind to the protein quantitatively, it varies in its ability to stain from batch to batch, and it exhibits metachromicity. Procion Navy MXRB (I.C.I. Ltd.) suffers none of these drawbacks, although being perhaps two or three-fold less sensitive. Thus, Procion Navy was used to quantitatively stain both one- and two-dimensional gels. Core histones and Hp were previously shown to be quantitatively stained, as is Hp (data not shown). However, the amount of stain taken up by Hp is slightly less (approximately 80%) than that by homologous Hp, on a weight basis. One-dimensional gels stained with Procion Navy were scanned at 580 nm as described previously, and two-dimensional gels were cut into narrow strips which were each scanned in the same way. Proteins in two-dimensional gels were quantified by summing appropriate peaks in the various scans.

Standard methods of statistical analysis were employed where appropriate.

RESULTS
The location of Hp in chromatin

Digestion of calf brain nuclei with micrococcal nuclease yielded monomer and oligomer nucleosome fractions, but in control experiments there was no generation of nucleosomes, in agreement with the previously observed lack of endogenous nuclease in brain. Small amounts of some protein species were found in supernatant fractions in control experiments, presumably of ribonucleoprotein particle origin. These proteins had lesser mobilities than that of Hp in SDS gels, and so did not interfere with analysis of the proteins of interest from the various nucleosomal species. This was done by two-dimensional electrophoresis (DNP-SDS), in which Hp and Hp were identified by co-electrophoresis of standard proteins.
Fig. 1a shows that like H1, H1° was present in those fractions which retain linker DNA (mononucleosome type MN2, and larger particles) but not in the linker-less core particle ("MN1"). This suggests that H1° resides on the linker region of chromatin.

Inspection of H1 and H1° bands in the MN2 region shows that they are not exactly coincident (see fig. 1a, and inset). This indicates that there exist particles (here called MN2°) which bear H1° but not H1, and suggests that H1° can replace H1 in chromatin.

Analysis of the DNA in the digested calf brain chromatin fractions (fig. 1b) did not reveal any diversity of DNA lengths which may have corresponded to the diversity of MN2 types. However, it may be beyond this technique to resolve very small differences in DNA lengths.

Quantification of H1 and H1° in various chromatin fractions

Calf brain nuclei were digested to 1.5 - 3.0% acid-soluble nucleotides by micrococcal nuclease. The amounts of H1° and H1 (relative to core histones) in MN2 and dimer fractions were determined from quantitatively-stained two-dimensional electrophoretograms (DNP-SDS). These gels are slightly less able than are one-dimensional gels to resolve protein bands which run close together, so results of quantification are slightly less accurate than those from one-dimensional gels. The MN2 and dimer fractions contained approximately the same amounts of core histones. Table 1 gives the results together with similar quantifications (from one-dimensional gels) of two preparations from undigested calf brain nuclei (which were insignificantly different from each other at the 5% level, with respect to histone/histone ratios). Both MN2 and dimer fractions seemed to be slightly depleted in H1 and perhaps slightly enriched in H1°. The ratio (H1 + H1°)/core histones was less than that in whole chromatin. This may have been due to replacement of H1-containing nucleosomes by nucleosomes bearing non-histone(s), although no such protein was obvious on our gels. The increase in ratio H1°/H1, probably mainly due to loss of H1, is analogous to the increased H5/H1 ratio in oligonucleosomes (compared with that in whole chromatin), which are produced by digestion of chicken erythrocyte chromatin by micrococcal nuclease.22

Fig. 1.

Two dimensional electrophoretograms of micrococcal nuclease-digested calf brain nuclei: (a) DNP-SDS electrophoresis, gel stained with Procion Navy. Inset: enlarged portion (of MN2 region bearing H1 and H1°) from a sister gel stained with Coomassie Brilliant Blue R250; (b) DNP-DNA electrophoresis, gel stained with ethidium bromide.
Table I: Quantification of HI and HI° in various calf brain chromatin fractions: histone/histone ratios determined from electrophoretograms stained by Procion Navy

<table>
<thead>
<tr>
<th>Chromatin fraction</th>
<th>n, no. of samples</th>
<th>Ratios: Mean (standard deviation), 2 sig. fig.</th>
<th>(H1+HI°)/CH</th>
<th>HI°/H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN2</td>
<td>2</td>
<td>0.14(0.049)</td>
<td>0.040(0.00028)</td>
<td>0.18(0.0049)</td>
</tr>
<tr>
<td>Dimer</td>
<td>2</td>
<td>0.14(0.0050)</td>
<td>0.044(0.031)</td>
<td>0.18(0.024)</td>
</tr>
<tr>
<td>Whole (a)</td>
<td>16</td>
<td>0.20(0.047)</td>
<td>0.033(0.014)</td>
<td>0.23(0.055)</td>
</tr>
<tr>
<td>Whole (b)</td>
<td>14</td>
<td>0.23(0.049)</td>
<td>0.029(0.0077)</td>
<td>0.26(0.047)</td>
</tr>
</tbody>
</table>

*: each sample itself an average of two or more scans.
†: CH = core histone
(a), (b) = two separate preparations, insignificantly different (at 5% level)

The results indicate that there is neither a great increase nor a decrease in HI° (relative to core histones) in these monomer and dimer fractions.

Quantification of HI and HI° in various animal tissues

The species used for this purpose was mouse. That the protein of interest in this species was in fact HI° was confirmed by the following:

(a) it was soluble in HC1 (0.25M) and perchloric acid (5% w/v), as is bovine HI° 16;
(b) its mobility in SDS electrophoresis was identical to that of bovine HI°;
(c) its cleavage by cyanogen bromide generated a major peptide of identical electrophoretic mobility, in SDS gels, to the corresponding peptide from bovine HI° (see ref.16);
(d) its tissue distribution was as expected for HI° - less in tissues which are more active in DNA synthesis (see ref 10 and table 2);
(e) its behaviour was as expected for HI° (by analogy with regenerating liver 23 and pancreas 11) when mouse salivary gland cells were stimulated to enter the cell cycle by administration of isoprotenenol 24 - levels of the putative HI° were lower in dividing cells than in cells which were unstimulated and in G0 phase (data not shown).
The thymus gland has little or no H1O (less than 0.5% relative to H1 in calf thymus (Smith and Johns, unpubl.)), and the amount of H1 in mouse thymus has been estimated to be one molecule of H1 per nucleosome. Therefore, the H1 level in the thymus was taken as the maximum, and H1 and H1O levels in other mouse organs compared with it. To enable identical treatment of all tissues studied, young mice (4-7 weeks old) were used, for the thymus atrophies with age. To facilitate scanning of protein bands on stained gels, preparations free of cytoplasmic proteins were made, from nuclei. Preparation of nuclei seems to result in some degradation or other alteration of H1O, but since the product of alteration is all or virtually all of the molecule and it has a mobility in SDS gels which is almost identical with that of the parent molecule, no correction was made for this. No loss of H1 was apparent during isolation of nuclei.

Various histone/histone ratios were determined for young mouse tissues, from scans of replicated, quantitatively-stained, one-dimensional SDS gels. The results are summarised in table 2. The ratio H1/core histone in each of the liver and kidney was significantly lower (at the 5% level) than that of the thymus, but in each case the ratio (H1+H1O)/core histone was not significantly different. This suggests that in organs where H1O occurs, it replaces H1, so that the level of total lysine-rich histone (H1+H1O) remains constant at about one molecule of H1 or H1O per nucleosome.

It has been reported that H1O levels increase with age. Preparations were made from nuclei of tissues from 6 and 9 month-old mice. Quantification of histones in these preparations (Table 2) agrees with this observation, with H1O levels increasing and stabilizing by 6 months of age. The results from aged mice support the conclusion from more comprehensive data with young animals - that H1O replaces H1.

Upon SDS gel electrophoresis, the H1 split into two bands, the relative abundance of which changed from tissue to tissue. However, no firm conclusion could be drawn concerning the preferential replacement of one H1 band or the other by H1O during ageing. Thus, it remains unknown which H1 subfraction(s) becomes replaced by H1O.

DISCUSSION

The evidence presented here shows that H1O can replace H1 in its position in the linker region, and probably protect a length of DNA not very, if at all different from that protected by H1 (about 20 base-pairs). The replacement of H1 can be quite extensive, so that for old mouse liver
Table 2: Quantification of H1 and H1° in nuclei from various mouse tissues: histone/histone ratios determined from electrophoretograms stained by Procion Navy

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Age (mths)</th>
<th>No. of preps.</th>
<th>No. of samples</th>
<th>Ratios: Mean (standard deviation), 2 sig. fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH/H1</td>
</tr>
<tr>
<td>Thymus</td>
<td>1-2</td>
<td>3</td>
<td>19</td>
<td>0.28(0.053)</td>
</tr>
<tr>
<td>Liver</td>
<td>1-2</td>
<td>4</td>
<td>19</td>
<td>0.21(0.058)</td>
</tr>
<tr>
<td>Kidney</td>
<td>1-2</td>
<td>2</td>
<td>13</td>
<td>0.21(0.063)</td>
</tr>
<tr>
<td>Thymus</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0.28(0.0076)</td>
</tr>
<tr>
<td>Liver</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0.20(0.0083)</td>
</tr>
<tr>
<td>Kidney</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0.17(0.011)</td>
</tr>
<tr>
<td>Liver</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>0.20(0.032)</td>
</tr>
<tr>
<td>Kidney</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>0.21(0.028)</td>
</tr>
</tbody>
</table>

*: each sample itself an average of two or more scans.
†: CH = core histones
‡: n = 25
†: n = 16
+: 9 mth.-old thymus not done - insufficient tissue in old mice.

or kidney it was estimated that on stained gels H1°/H1 < 0.4. Bovine H1°
takes up slightly less stain than does bovine H1 (see Methods). Assuming that
this is also the case in mouse, and correcting accordingly, on a weight basis
H1°/H1 < 0.5, which is equivalent to about a third of nucleosomes bearing H1°
instead of H1.

The difference in mobilities of MN2 and MN2° particles in DNP gels is of
interest. This is analogous to H5-containing mononucleosomes ("MN2E") moving
faster than H1-containing MN2 particles in DNP gels. This could have arisen
by MN2E being more negatively charged, because its DNA was 5 to 10 base pairs
longer than that in MN2, although Simpson apparently found no difference
in DNA lengths between such particles. The nature of the difference between
MN2 and MN2° is unclear. There may be a difference in DNA lengths but it must
be small if it exists. H1 and H1° contain roughly similar proportions of
acidic and basic amino acid residues, and the isoelectric point of H1° is
probably slightly higher than that of H1, so differences in charge probably

6076
do not explain the difference in mobilities of MN2 and MN2°. The explanation possibly lies in the sizes of the particles, arising perhaps by differences in compaction, but also by differences in molecular weight — HI° probably has a smaller molecular weight than HI does. This is suggested by the greater mobility of HI° in SDS gels 16, and its lesser mobility upon gel filtration chromatography 29.

The high H5/Hi ratio observed in oligonucleosomes from micrococcal nuclease digested chicken erythrocyte chromatin 22, is analogous to our result with high HI°/HI ratios in monomer and dimer fractions. Bakeyeva and Bakayev 22 suggested that this arose because H5 protected nucleosomes against nuclease attack more efficiently than HI did (that is, providing greater resistance to further nuclease action which generates MN1 particles). Like H5, HI° may protect against nuclease attack more efficiently than HI does.

While this paper was in preparation, two relevant papers appeared in print. The first, by D'Anna et al 30 reported (contrary to our results from normal tissues) that an HI°-like protein accumulated without concomitant loss of HI in cultured cells blocked in GI phase by butyrate treatment. It is known, however, that blockage of the cell cycle disrupts the cell's normal functioning and may introduce artifacts (e.g. refs. 31,32). That this may have been the case was suggested by the fact that there was no direct correspondence between the abundance of this protein and the proportion of the population blocked in GI 30.

The second relevant paper by Albright et al 33 mentions that "NF" (probably HI°) occurs in MN2-type mononucleosomes, agreeing with our observations, as does the report of "IP 25" (possibly an HI°-like protein described in mouse erythroleukaemia cells) existing in the linker region 34.

It has been found that brief digestion of chromatin by micrococcal nuclease generates a mononucleosome population enriched in transcribed sequences 12,13. The brain is an organ which is active in transcription 35, so it is assumed that in the present work brief digestion yielded a mononucleosome fraction enriched in transcribed sequences. It has also been reported that micrococcal nuclease may preferentially attack nascent DNA 36, but although brains from young animals such as those used here synthesize some DNA 37, we expect the contribution from this source to be small. Since it was found that HI° was only slightly or not at all enriched in MN2 and dimer fractions, we tentatively conclude that the distribution of HI° is not affected by transcription. This conclusion is in apparent disagreement with a pair of (contradictory) reports. Firstly, the HI°-like protein IP 25 was found not to be
solubilized by digestion by DNAse I, which lead to the suggestion that this protein is associated with repression of gene activity. Secondly, and to the contrary, it was reported that a protein ("20K") with electrophoretic mobilities like those of H10 was enriched in putative actively transcribing chromatin as isolated by the DNAse II/Mg2+ solubility procedure from trout testis (an organ which in mammals contains H10). Our conclusion is possibly supported by the observation that there is in rat satellite chromatin a putative H10 protein which is present in quantities not very or at all different from those of bulk chromatin. Satellite chromatin is generally considered to be transcriptionally inactive, although there is one report to the contrary.

Our results disfavour the idea of analogy with the structurally-related H5 that H10 may repress transcription, but probably still allow that it may repress DNA synthesis.

ACKNOWLEDGEMENTS
We would like to thank Dr. G. Goodwin and our other colleagues for helpful discussion, Ms. C. Toogood for able technical assistance and Mr. K. Gomer for injection of mice with isoproterenol. This work was supported by MRC grant G976/120.

REFERENCES