Mapping tRNA structure in solution using double-strand-specific ribonuclease \(V_1 \) from cobra venom

Raymond E. Lockard and Ajit Kumar

Department of Biochemistry, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, N.W., Washington, DC 20037, USA

Received 1 May 1981

ABSTRACT

A method for mapping all base-paired stems in both elongation and initiator tRNAs is described using double-strand-specific ribonuclease \(V_1 \) from the venom of the cobra \(Naja naja oxiana \). \(^{32}\text{P}\)-end-labeled RNA is first partially digested with double-strand-specific \(V_1 \) nuclease under near physiological conditions, and the resultant fragments are then electrophoretically fractionated by size in adjacent lanes of a polyacrylamide gel run in 90% formamide. After autoradiography, the base-paired nucleotides are definitively located by comparing \(V_1 \) generated bands with fragments of known length produced by both \textit{Neurospora} endonuclease and base-specific ribonucleases. Using the substrates yeast tRNAPhe and \(E. \text{ coli } \) tRNAMet of known three-dimensional structure, we find \(V_1 \) nuclease to cleave entirely within every base-paired stem. Our studies also reveal that nuclease \(V_1 \) will digest paired nucleotides not hydrogen-bonded by standard Watson-Crick base-pairing. In yeast tRNAPhe cleavage of both wobble base-pairs and nucleotides involved in tertiary base-base hydrogen bonding is demonstrated.

INTRODUCTION

Determination of the structure of RNA molecules in solution is important for our understanding of their biological role within a cell. Though considerable RNA structural information has recently been derived from both spectroscopic and X-ray crystallographic studies (1), as well as from chemical modification work (2-4); nuclease susceptibility offers many advantages including definitive identification of RNA cleavage sites using a structure-specific enzymatic probe in solution. In an RNA molecule, the accessibility of a specific region towards nucleolytic cleavage is dictated, in part, by its relative exposure to the surface of the molecule, and also by the size and structural specificity of the enzyme. Recent studies have shown that both single-strand-specific \(S_1 \) nuclease and \(T_1 \) RNase can be used successfully for mapping nucleotides known to be in single-stranded loops in yeast tRNAPhe (5,6) and \(E. \text{ coli } \) tRNAMet (7,8). This structure mapping procedure by Wurst, et al. (5), employs \(^{32}\text{P}\)-end-labeled RNA which is first partially digested with single-strand-specific nucleases under nondenaturing
Nucleic Acids Research

conditions, and the resultant fragments then electrophoretically fractionated by size in adjacent lanes of a denaturing polyacrylamide gel. The procedure is limited, however, in allowing detection of only the unpaired nucleotides within a molecule. Recently, Favorova, et. al. (9) reported the use of "cobra venom ribonuclease" isolated from Naja naja oxiana venom for mapping double-stranded regions in 32P-end-labeled yeast tRNAPhe and tRNAVal. However, this enzyme does not cleave either the D or T\textsubscript{Ψ} stems in tRNAPhe or the D stem of tRNAVal, indicating a more limited application of this enzyme fraction in both RNA structure determination and mapping protein protected sites (9). In this paper we report the isolation of a double-strand-specific ribonuclease (V\textsubscript{I}) also from the venom of the cobra Naja naja oxiana. We show that by using this enzyme as a structure probe, one can definitively localize all base-paired stems within a 32P-end-labeled tRNA molecule after electrophoretic fractionation of the V\textsubscript{I} digest on polyacrylamide gels run in 90\% formamide. We have also determined, using 32P-end-labeled yeast tRNAPhe as a substrate, that some nucleotides known to be involved in tertiary interactions are also recognized and cleaved by this enzyme.

MATERIALS

Lyophilized venom from the cobra Naja naja oxiana was purchased from Sigma Chemical Co. The RNase purification resins were obtained from the following sources: Sephadex G-75 (superfine) from Pharmacia Chemicals, and SP-Sephadex C-50-120 (sulfopropyl-sephadex) from the Sigma Chemical Co. [3H]-uridine-labeled reoviral genome RNA (type 3) was a kind gift from Dr. Aaron J. Shatkin, Roche Institute of Molecular Biology. [3H]-polyuridylic acid (22 mCi/mmole) was purchased from Schwarz/Mann. Polyuridylic acid was obtained from P.L. Biochemicals Inc. Human placental initiator tRNAMet was a kind gift from Dr. U.L. RajBhandary, MIT. Both E. coli tRNAMet and yeast initiator tRNAMet were kind gifts from Dr. Eric Ackerman, University of Chicago. Yeast phenylalanine tRNA was purchased from Boehringer-Mannheim. Both calf intestinal alkaline phosphatase and T\textsubscript{4} polynucleotide kinase were supplied by Boehringer-Mannheim and used without further purification. T\textsubscript{4} RNA ligase and Neurospora crassa endonuclease were purchased from P.L. Biochemicals, Inc. Highly purified S1 nuclease was a kind gift from Dr. John Vournakis and Dr. George Pavlakis, Syracuse University. [γ-32P]-ATP (> 7,000 Ci/mmole) was prepared from carrier-free 32P\textsubscript{4} (New England Nuclear-NEX- 053) by the procedure of Johnson and Walseth (10). [5'-32P]Cp (2,900 Ci/smole) was purchased from New England Nuclear, Inc.
METHODS

Preparation and Assay of Double-Strand-Specific Ribonuclease V1 from Naja naja oxiana Cobra Venom

Ribonucleases present in the cobra venom Naja naja oxiana were prepared and fractionated by modifications of the procedure of Vasilenko and Rait (11). 1.5 g of powdered venom was dissolved in 15 ml of 0.05 M Tris-succinate, pH 5.6 (Buffer A) and centrifuged at 15,000 RPM for 30 min at 4°C. The supernatant was removed and dialyzed overnight at 4°C against 3 liters of Buffer A. The dialyzed solution of venom was immediately applied to a Sephadex G-75 (superfine) column (3 x 105 cm), and eluted with Buffer A at a flow rate of 4.0 ml/hr. Fractions of 3.5 ml were collected, absorbance at 280 nm was read, and each fraction was assayed for both RNA double- and single-stranded specificity.

RNA double-stranded specificity was assayed using [3H]-uridine-labeled reoviral genome RNA as a substrate. Five µl was removed from each column fraction and added to 5 µl of a cocktail containing 3,000 CPM of [3H]-reoviral double-stranded RNA (8,000 CPM/µg) in buffer containing 0.20 M NaCl, 10 mM MgCl₂, and 20 mM Tris-HCl pH 7.2. The reaction was incubated at 37° for 60 min after which 20 µl of carrier yeast tRNA (10 mg/ml in 0.2M NaCl) was added, followed by the addition of 75 µl of ethanol. The mixture was vortexed and allowed to precipitate at 4°C for 30 min. The precipitate was collected by centrifugation for 20 min at 15,000 RPM at 4°C, and 50 µl of supernatant was removed and counted in aqueous scintillant.

Single-strand-specific RNase activity was assayed using uniformly [3H]-labeled polyuridylic acid (2000 DPM/nmol) as a substrate. Five µl from each column fraction was added to 15 µl of a cocktail containing 30,000 DPM of [3H]-poly U in 25 mM Tris-HCl pH 7.2. The mixture was incubated at 37° for 30 min. The reaction was terminated by the addition of carrier yeast tRNA and likewise ethanol precipitated as in the double-stranded assay, and 50 µl of supernatant was then removed after centrifugation and counted in aqueous scintillant.

The four major peaks of double-stranded ribonuclease activity eluting from the G-75 column (see Fig. 1A) also contained single-stranded activity. Peak #4 was the only fraction which exhibited primarily double-stranded specificity when assayed under partial digestion conditions using 32P-end-labeled tRNA as a substrate (see below). Fractions 84-94 of peak #4 were pooled and applied to a sulfopropyl-sephadex column (1 x 50 cm) equilibrated with 0.02 M of Buffer A and eluted with a 350 ml linear gradient of 0.02M
Buffer A and 0.02M Tris pH 10.1 containing 0.40M KCl (Buffer B). The flow rate of the column was 12 ml/hr and 1.8 ml fractions were collected. The absorbance at 280 nm was read and each fraction was assayed for both RNA double- and single-stranded specificity. Tubes #136-142 (see Fig. 1B) were the only fractions which exhibited entirely double-stranded activity in the absence of contaminating single-stranded activity. These fractions, venom RNase 1 (V₁) were individually dialyzed at 4°C against 500 ml of buffer containing 20 mM Tris-HCl, pH 7.4 and 60% glycerol, and could be stored indefinitely at -20°C in 50% glycerol without noticeable loss of activity.

One unit of nuclease activity is defined as the amount of enzyme that solubilizes 10 μg of double-stranded reoviral RNA in 30 min at 37°C in 20 mM Tris-HCl, pH 7.2, buffer containing 0.20 M NaCl and 10 mM MgCl₂.

Preparation of [5'-32p]-Labeled and [3'-32p]-Labeled tRNA

5'-32p-end-labeled tRNA was prepared as described by Silberklang et al. (12). For 3'-32p-end-labeling, 0.10 A₂₆₀ units of either yeast tRNA Phe, E. coli tRNA Met, or human tRNA Ub were reacted with 200 pmols of [5'-32p]Cp (2,900 Ci/mmol) in a 10 μl reaction mixture containing 50 mM Hepes-KOH, pH 8.3, 10 mM MgCl₂, 3.3 mM DTT, 10% glycerol, 5 μM ATP and 6 units of T₄ RNA ligase for 60 min at 37°C. Calf intestinal alkaline phosphatase was then added to a final concentration of 0.5 units/ml and incubated for an additional 45 min at 37°C to remove all terminal 3' phosphates from the 3'-32p-labeled tRNA molecules. The reaction was terminated by the addition of 0.20 M EDTA to a final concentration of 20 mM and 40 μl of loading solution, and then layered onto a 15% polyacrylamide gel. The gel was electrophoresed at 30°C until the xylene cyanol migrated 20 cm, and the 3'-32p-labeled tRNA was localized by autoradiography, excised, recovered by electrophoretic elution, and ethanol precipitated as previously described (13).

Digestions with S₁ Nuclease and T₁ RNase for Secondary Structure Analysis

Partial digestion of 32p-end-labeled tRNA with single-strand specific S₁ nuclease and T₁ RNase were carried out as previously detailed (14).

Digestion with V₁ Nuclease for Secondary Structure Analysis

Partial digestions with V₁ nuclease were performed in 5 μl reactions containing 25 mM Tris-HCl, pH 7.2, 10 mM MgCl₂, 0.20 M NaCl at enzyme-to-substrate ratios of 1 x 10⁻⁵-10⁻⁶ units/μg RNA. Samples were preincubated for 10 min at 37°C prior to addition of enzyme, and digested with V₁ nuclease at 37°C for 1-10 min as indicated. The reactions were stopped with an equal volume of STOP solution (9M urea, 20 mM EDTA, 0.5 μg/ml tRNA carrier, 0.05% XC and 0.05% BPB) and the digests were stored at -80°C until
analyzed by electrophoresis.

Digestions for Sequence Analysis

Partial enzymatic digestion of 32P-end-labeled tRNA with T$_1$ RNase was performed as previously described (13,14), except the digestion time was limited to 10 min at 70°C at an enzyme-to-substrate ratio of 5×10^{-2} units/µg RNA. Controlled acid hydrolysis (H^+) was performed by boiling 32P-end-labeled tRNA with 1 µg/ml of tRNA carrier in 10 mM H$_2$SO$_4$ for 1 min as previously described (15).

Electrophoresis of Partial Digests on Formamide Polyacrylamide Gels

Both structure and sequence reactions were fractionated in adjacent lanes of 15% polyacrylamide slab gels (0.40 mm thick x 33 cm wide x 80 cm long) run in 90% formamide as a denaturant.

Reagent-grade formamide (Fisher Scientific) was repeatedly deionized by mixing with Rexyn-I-300 (Fisher Scientific) ion-exchange resin until the pH was 4.0-4.5. Deionized formamide was stored at -20°C until use. For preparation of one gel, to 216 ml of deionized formamide (prewarmed to 30°C) 12 ml of 40X TBE buffer (2 M Tris-base - 2 M boric acid - 0.04 M EDTA, pH 8.3) was added to give a final concentration of 2X TBE. For a 15% gel, 34.2 g acrylamide - 1.8 g of bis-acrylamide was added, and for a 10% gel, 22.8 g acrylamide - 1.2 g of bis-acrylamide was added. After the ingredients were thoroughly dissolved, the solution was quickly filtered through a Whatman #1 filter-disc, but was not degassed. Two hundred milligrams of ammonium persulfate, predissolved in 200 µl of H$_2$O was immediately added, followed by 700 µl of TEMED (N, N', N', N'-tetramethylethylene-diamine). The gel solution was immediately injected into the gel mold from the top using a 50 ml syringe fitted with an 18-gauge needle. Gels were used within 12 hrs after polymerization and were pre-electrophoresed at 4000 volts for 3-4 hr with 2X TBE running buffer prior to loading the samples. Gels 80 and 100 cm long were run between 4000-5000 volts to generate enough heat to ensure complete denaturation of RNA fragments.

RESULTS

Isolation of Double-Strand Specific Ribonuclease V$_1$ from Cobra Venom

When dialyzed venom is completely fractionated on a Sephadex-G75 column and assayed for double-strand ribonuclease activity using $[^3]$H-labeled reoviral genome RNA as a substrate as shown in Figure 1A, four major peaks of activity are resolved rather than two as previously reported (11). These same fractions when assayed for single-strand ribonuclease
activity using either $[^3]H$-labeled poly U, poly C, or poly A as substrates, generated a similar profile (data not shown), indicating that nuclease activity which would degrade single-stranded RNA copurified with the double-stranded activity. When fractions within peaks 3 and 4 of the G-75 column were further assayed for their ability to specifically cleave base-paired regions in ^{32}P-end-labeled yeast tRNAPhe (see METHODS), only peak 4 was found to be enriched for the double-stranded activity. Fractions within peak 3 displayed neither sequence nor structural specificity in such an assay under a variety of non-denaturing and denaturing conditions. Peaks 1 and 2 were not assayed with ^{32}P-end-labeled tRNAPhe due to an excessive amount of phosphatase copurifying with these fractions.

Fractions exhibiting double-strand-specific ribonuclease activity...
were pooled from peak 4 and were further purified from contaminating single-strand activity by sulfopropyl-sephadex column chromatography as shown in Figure 1B. Fractions exhibiting double-strand-specific activity eluted as two defined peaks; one major peak (fractions 145-165) preceded by a shoulder peak (fractions 135-145). When these fractions were similarly assayed with \(^{3}H\)-labeled Poly U, only the shoulder fractions were free of single-strand-specific ribonuclease activity. A comparison of the nucleolytic activities of both the shoulder fractions, venom ribonuclease 1 (V\(_1\)), and single-strand-specific S\(_1\) nuclease is shown in Figure 2. V\(_1\) nuclease exhibits no detectable single-stranded activity using either \(^{3}H\)-Poly U as a substrate (Figure 2A) or poly C and poly A (data not shown). Alternatively, as indicated in Figure 2B, V\(_1\) nuclease actively hydrolyzed double-stranded \(^{3}H\)-reoviral genomic RNA unlike S\(_1\) nuclease, underscoring the definitive structural specificity of V\(_1\)'s enzymatic activity.

Use of Ribonuclease Fraction V\(_1\) as a Probe for Mapping RNA Higher-Order Structure in Solution

Yeast tRNA\(_{\text{Phe}}\)

Previous studies have shown that both single-strand-specific S\(_1\) nuclease and T\(_1\) RNase can be used successfully as structure probes for mapping single-stranded regions in yeast tRNA\(_{\text{Phe}}\) (5,6) and other tRNAs in solution (7,8), as well as for localizing unpaired nucleotides in 5S and 5.8S rRNA (17,18) and in \(\alpha\) and \(\beta\) globin mRNA (14). Figure 3 shows a structure map

![Graph A](image1.png)

FIGURE 2. Comparison of the rates of nucleolytic cleavage of (A) single-stranded \(^{3}H\)-polyuridylic acid, and (B) double-stranded \(^{3}H\)-reoviral genome RNA with both S\(_1\) nuclease (0.3 d/A) and V\(_1\) nuclease (1 x 10\(^{-4}\) d/A) (See METHODS).
FIGURE 3. Autoradiogram of partial digests on 5'-32P-end-labeled yeast tRNAPhe electrophoresed on a 15% polyacrylamide slab gel in 90% formamide. Gel dimensions were 0.40 mm thick x 33 cm wide x 80 cm long. Partial digests contained the following amounts of enzyme per µg of RNA. From left to right: (-) minus enzyme; (S\textsubscript{1})S\textsubscript{1} nuclease, 0.06 U/1 min, 0.06 U/10 min, 0.006 U/1 min, 0.006 U/10 min; (N.E.) Neurospora crassa endonuclease, 5 x 10-2U; (V\textsubscript{1})V\textsubscript{1} nuclease, 1 x 10-5 U/1 min, 1 x 10-5 U/10 min + 20 mM EDTA, 1 x 10-6 U/1 min, 1 x 10-6 U/10 min; (T\textsubscript{1}s)T\textsubscript{1} RNase under nondenaturing conditions, 3 x 10-5 U, and 3 x 10-4 U; (H+) controlled acid hydrolysis; (T\textsubscript{1})T\textsubscript{1} RNase under denaturing conditions, 0.005 U, 0.0005 U. Bracketed nucleotide sequences at left indicate regions digested by nuclease V\textsubscript{1}.

of 5'-32P-end-labeled yeast tRNAPhe. Double-strand-specific V\textsubscript{1} cleavages are indicated along with single-strand-specific S\textsubscript{1} and T\textsubscript{1} nuclease digests. V\textsubscript{1} nuclease cleaves all the stem regions of this molecule as summarized in Figure 6A using both 5'- and 3'-32P-end-labeled RNA. Primary V\textsubscript{1} cleavage sites were determined from digests in which less than 3% of the molecules were cleaved (1 x 10-6 units/µg RNA for 1 min at 37°C in 20 mM
Tris-HCl pH 7.2, 10 mM MgCl₂, and 0.2 M NaCl). No difference in the cleavage pattern was noted when the Mg²⁺ concentration of the incubation mixture was varied from 1-10 mM. However, the addition of 20 mM EDTA at zero time, as shown in Figure 3, resulted in greater than 90% inhibition of the enzyme, indicating that V₁ nuclease requires divalent cations for activity. Since the pH of the reaction mixture when varied from pH 4-9 had relatively little effect on the enzymatic activity, our studies were carried out under essentially physiological conditions. V₁ nuclease like S₁ nuclease generates fragments with 3' hydroxyls and 5'-phosphates at the site of cleavage. We found that a complete ladder of fragments with 3' hydroxyls can easily be generated upon partial digestion of ³²P-end-labeled RNA with Neurospora crassa endonuclease. When loaded onto a lane between both the S₁ and V₁ partial digests, the Neurospora digest facilitates simultaneous interpretation of both single- and double-strand-specific cleavages.

It is apparent from the digestion pattern of yeast tRNAPhe that not all base-paired nucleotides are digested by V₁ nuclease even at longer digestion times. Differences in the intensity of the cleavages also exist. The acceptor stem appears to be asymmetrically cleaved (G₁₄-A₅ and U₆₉-G₇₂) while more symmetrical cutting occurs within the D stem (C₁₁-C₃₃ and C₂₂-G₂₄), the anti-codon stem (C₂₇-A₂₉ and A₂₁₃-G₂₄₂), and the T₄ stem (m₅C₄₉-U₅₀ and A₶₃-G₆₆). The strongest cleavage within the entire yeast tRNAPhe molecule occurs after C₂₈ on the 5' side of the anticodon stem. The nucleotide at this position is not only cleaved strongly within this elongation tRNA, but is, likewise, very accessible in both prokaryotic and eukaryotic initiator tRNAs (see below). One particularly interesting cleavage site is a weak scission after G₄ and a corresponding strong cleavage at U₆₉ in the acceptor stem. Refinement of the electron density map at a resolution of 2.5 angstroms has confirmed the wobble-type of base-pairing between G₄ and U₆₉ (16). Nuclease V₁, therefore, appears to cleave after nucleotides in helical regions which are not hydrogen-bonded by standard Watson-Crick base-pairing.

We have found V₁ to also cleave after two nucleotides known to be involved in tertiary interactions. The most profound of which occurs after m₅G₂₆ which forms a "propeller" base-pair with A₄₄ (16). A weak cleavage after C₄₈ is also evident. C₄₈ is involved in trans base-pairing with G₁₅ by two hydrogen bonds which appear to stabilize the joining of the D stem with the T₄ stem by stacking (15).

Single-strand-specific cleavages by S₁ nuclease are identical to those previously reported for yeast tRNAPhe by Wurst et al. (5). Particularly...
strong cleavage are observed at the -C-C-A end and in the anticodon loop after A35 and A36 within 1 min and U33 after 10 min of digestion at 37°C. Single-strand-specific T1 RNase cleavages are also the same as previously reported by Wrede et al. (6). Weak cleavages after G3 and C6 of the acceptor stem were also noted after long digestion periods. It is quite possible that these scissions are a product of secondary digestion and unrelated to the C4-U69 wobble base-pair, since nuclease V1 also cleaves C4. Alternatively, it is conceivable that a region within a helical domain that is weakly base-paired can be cleaved by both single- and double-strand specific enzymatic probes. We have found G-U wobble base-pairs in E. coli 5S RNA similarly cleaved by both S1 and V1 nucleases (unpublished experiments).

E. coli tRNA^Met

Figure 4 shows a structure map of 3'-32p-end-labeled E. coli initiator tRNA^Met using both single- and double-strand-specific enzymatic probes. Our results summarized in Figure 6B from studies with both 5'- and 3'-32p-end-labeled RNA indicate that V1 nuclease again cleaves all stem regions within this tRNA. The acceptor stem is more symmetrically cleaved (C2-G5 and C66-C71) than in yeast tRNA^Phe, with a preponderance of strong scissions on the C-rich 3'-end strand. A marked reduction in cleavage is observed in the D stem (A11-G12 and C23-U24) and also within the T9 stem (C51-G52 and C61-C62) both in the number and intensity of cleavage sites, possibly due to a more compact structure than seen in yeast tRNA^Phe (19). Cleavage of the anticodon stem (U27-G29) and (C40-A43) was, however, strikingly similar to that of yeast tRNA^Phe with a strong scission at C28 (the numbering system according to Gauss et al. (20). Since the three-dimensional structure of E. coli tRNA^Met has been determined from X-ray crystallographic studies to a level of only 3.5 angstroms (19), precise identification of the tertiary interactions cannot yet be made. Neither G26 nor C48 was found to be cleaved, possibly suggesting some differences from yeast tRNA^Phe in both the hydrogen bonding and stacking interactions associated with these nucleotides.

Single-strand-specific cleavages by S1 nuclease are essentially identical to those previously reported by Wrede and Rich (8). Only two strong scissions are observed after C34 and A35 of the anticodon loop, different from the more extensive S1 digestion pattern observed within the anticodon loops of elongation tRNAs (7). Longer digestion times result in weak cleavages after U36 as well as C56 and A57 of the T9 loop. Two strong single-strand-specific T1 RNase cleavages are detected after G18 and G19 in the D loop.
FIGURE 4. Autoradiogram of partial digests on 3'-32p-end-labeled E. coli tRNA^Met electrophoresed on a 15% polyacrylamide slab gel in 90% formamide. Gel dimensions were 0.40 mm thick x 33 cm wide x 80 cm long. Partial digestion conditions were the same as in Fig.3. Bracketed nucleotide sequences at left indicate regions digested by nuclease V1.

Human tRNA^Met

Figure 5 shows a structure map of 3'-32p-end-labeled human placental initiator tRNA^Met with both single- and double-strand-specific probes. A summary of all cleavage sites using both 5'- and 3'-32p-end-labeled RNA is shown in Figure 6C. The V1 digestion pattern shows similarities with both yeast tRNA^Phe and E. coli tRNA^Met in cutting within all stems. The acceptor
FIGURE 5. Autoradiogram of partial digests on 3'-32P-end-labeled human tRNAMet electrophoresed on a 15% polyacrylamide slab gel in 90% formamide. Gel dimensions were 0.40 mm thick x 33 cm wide x 80 cm long. Partial digestion conditions were the same as in Fig. 3. Bracketed nucleotide sequences at left indicate regions digested by nuclease V\textsubscript{1}.

stem is asymmetrically cleaved (A\textsubscript{G}6-G5 and U\textsubscript{67}-C\textsubscript{71}) as in yeast tRNAPhe. Limited digestion, however, occurs within the Ty stem (A\textsubscript{50}-G\textsubscript{52} and A\textsubscript{63}-C\textsubscript{65}) similar to that of E. coli tRNAMet, while the intensity and number of cleavages is greater within the D-stem (C\textsubscript{11}-C\textsubscript{13} and C\textsubscript{23}-G\textsubscript{24}). Again, cleavage of the anticodon stem (C\textsubscript{27}-G\textsubscript{29} and C\textsubscript{40}-G\textsubscript{43}) is strikingly similar in all three of these tRNAs with nucleotide 28 again being the strongest cleavage in the anticodon stem. As with E. coli tRNAMet, no cleavage of unpaired nucleotides is observed. Neither m2G\textsubscript{26} nor m3C\textsubscript{48} is cleaved, possibly suggesting similarities with E. coli tRNAMet in both the hydrogen bonding and stacking interactions associated with these nucleotides. As with the prokaryotic ini-
tiator tRNA^Met, two relatively strong cleavages with S^ nuclease are observed after C34 and A35 in the anticodon loop, with a much weaker scission at U36 only after longer digestion times. Strong T1 RNase cleavages are detected after G15, G18 and G19 with a weaker scission after G57 (7).

DISCUSSION

In conjunction with the structure mapping procedure of Wurst et al. (5), we show how one can definitively localize all base-paired nucleotides in a ^32P-end-labeled tRNA molecule by partial digestion with double-strand-specific ribonuclease V1 from cobra venom. Using tRNA substrates of known three-dimensional structure, we have found V1 nuclease to cleave within all base-paired stems. It is apparent from digestion patterns of these tRNAs that not all base-paired nucleotides are cleaved, and that variation in the intensity of cleavages within a stem also prevails. For example, as summarized in Figure 6 the acceptor stems of both yeast tRNA^Phe and human tRNA^Met are asymmetrically digested, while more symmetrical cleavage in both strands of this stem occurs with E. coli tRNA^Met. Also, some cleavage sites are so weak, e.g., C61-C62 of E. coli tRNA^Met and A63-C65 of human tRNA^Met, that they are likely due to secondary cutting and are only discernible after relatively long exposures of the polyacrylamide gels. It is presently unclear whether such variations are due in part to differences in accessibility of regions of these helical domains in these tRNAs, or are due to the yet undefined sequence and precise structural requirements of this enzyme. Only after examining a wide spectrum of substrates will we be able to distinguish more clearly between these alternatives.

A consistently strong cleavage in all three tRNAs studied here is nucleotide #28 on the 5'-side of the anticodon stem irregardless of what base is present. In yeast tRNA^Met we have found A28, likewise, to be a very strong cleavage in this molecule. The very similar cleavage pattern in all anticodon stems examined thus far, suggests that both eukaryotic elongation and initiator tRNAs, as well as prokaryotic initiators, might have a similar helical structure in this region. Why nucleotide #28 in these tRNAs is so readily recognized and cleaved by V1 is possibly related to the precise structural specificity of the enzyme.

It has become increasingly clear from the tRNA substrates studied thus far, that V1 nuclease unlike the previously characterized "cobra venom ribonuclease" (9), has the ability to cleave nucleotides which are not hydrogen-bonded by standard Watson-Crick base-pairing. For example, the wobble-base-
FIGURE 6. Complete structure maps of (A) yeast tRNA^Phe, (B) E. coli tRNA^Met, and (C) human tRNA^Met using both single-strand-specific nucleases S1 and T1, and double-strand-specific V1 nuclease as structure probes.
pair G4-U69 in the acceptor stem of yeast tRNA^{Phe} is readily recognized and cleaved. Likewise, we have found wobble base-pairs in E. coli 5S RNA cleaved by V1 (unpublished data). More interesting, is the cleavage of two nucleotides within yeast tRNA^{Phe} which are known to be involved in tertiary interactions. m2G26, which forms the "propeller" base-pair with A44 (16), is easily digested by V1 in both yeast tRNA^{Phe} and yeast tRNA^{Met} (unpublished experiments). However, G26 of E. coli tRNA^{Met} and m2G26 of human tRNA^{Met} are not cut. C48 which forms a trans base-pair with G15 in yeast tRNA^{Phe} is also cleaved, but not within any other tRNA currently examined. Whether these nuances are a reflection of subtle conformational differences between the tRNA molecules is difficult to ascertain as yet.

The method reported here for electrophoretic fractionation of enzymatic digests on thin polyacrylamide gels run in 90% formamide, rather than the more commonly used denaturant 8M urea, has many advantages. Not only will 90% formamide completely denature and allow resolution of V1 generated fragments from highly stable base-paired RNA helices, but also will eliminate band contraction during sequence analysis of very G:C rich DNA restriction fragments (unpublished results). Noteworthy is that gels less than 10% in polyacrylamide appear not to polymerize adequately in 90% formamide and as a result give poor resolution of very large RNA and DNA fragments.

Finally, the method described here for localizing base-paired nucleotides within an RNA molecule in solution, is general and can complement other procedures currently available (21-24). This method, however, does not allow identification of which nucleotides are base-paired to which nucleotides, for which either psoralen crosslinking (22), or direct isolation of base-paired regions might be used (24). However, in conjunction with these other procedures, can be a powerful tool to ultimately define the architecture of important biological molecules in solution.

ACKNOWLEDGEMENTS

We thank Aaron J. Shatkin (Roche Institute) for the [3H]-labeled reoviral genome RNA. We thank Eric Ackerman (University of Chicago) for the preparations of E. coli tRNA^{Met} and yeast tRNA^{Met}. We also thank U.L. RajBhandary (MIT) for the human tRNA^{Met} and for many helpful discussions. We are also indebted to Patrick Jacobsen (G.W. University) for his helpful Russian translations, and Eddie Carrol for his excellent technical assis-
This work was supported by grants from NIH (GM 27692) to Raymond E. Lockard, and from NSF (PCM-2919501) and NIH (CA-27358) to Ajit Kumar.

REFERENCES