transplantation in Wiskott-Aldrich syndrome. Transplantation 1993; 56: 747–748

Comments of a frustrated Batavian friend having unsuccessfully practised Yoga to solve the Nephroquiz

Although I do not consider myself a beginner, I was unable to solve the Nephroquiz ‘Out of the Blue’ in the issue of last September. I have studied Figure 1 for quite a long time. Most puzzling to me was the question of whether the extremity presented was the right leg of a supine patient or the left arm of a prone patient. In either case the two severely cyanotic fingertips in the picture most probably belonged to a second individual who was also seriously ill. When I tried to simulate the position of the fingers by lying on my back or on my stomach, the only thing I accomplished was that I almost twisted first my left and subsequently my right arm.

In addition to this acrobatic exercise the presented case raised another question, which is usually the first that I ask in such instances: ‘Who examined the urinary sediment?’ First, there is a failure to report on the morphology of the erythrocytes. I can imagine that the authors left this out to make their question not too easy. But I certainly refuse to believe that there were no erythrocyte casts present. In such a case of active IgA nephropathy the absence of erythrocyte casts must be considered as highly unusual. Such a result is most often caused by the failure of the examiner to screen the sediment carefully at low magnification (× 100). We have shown in a blinded, controlled study of 107 patients with proven causes of either glomerular or non-glomerular haematuria that, in the patients with glomerular haematuria, erythrocyte casts can be detected in 83% of the cases [1]. Especially the presence of dysmorphic erythrocytes should be a reason for a thorough screening of the entire sediment. This may take some time (up to 10 min), but the examiner is often rewarded by the detection of one or two characteristic erythrocyte casts.

We have recently proposed a very simple procedure to fix the urinary sediment [2]. It will enable the beginner to save the sediment for later consultation of a more experienced ‘uroscopist’.

Department of Nephrology
University Hospital Nijmegen
The Netherlands

R. A. P. Koene


A case of early-onset pre-eclampsia associated with IgA nephropathy

Sir,

A 31-year-old healthy Japanese woman presented to an obstetrician in September 1996 with amenorrhoea and was found to be pregnant (7th week of gestation). In November 1996 (16th week of gestation), she weighed 56 kg, which represented a gain of 2 kg over her normal weight. Pretibial oedema was noted. During the 19th week of gestation, she weighed 70 kg and anasarca was noted. She consulted another obstetrician who noted a positive test for proteinuria and haematuria, hypoproteinaemia and hypoalbuminaemia, and hypertension. She was transferred to our hospital with a diagnosis of severe pre-eclampsia. On admission, the serum creatinine (s-Cr) was 141 µmol/l (normal range in pregnant women; 35–71 µmol/l), blood urea nitrogen (BUN) 5.3 mmol/l, uric acid 9.55 mg/dl (normal; 3.0–6.0), total protein (TP) 44 g/l and albumin 18 g/l in blood chemistry. Her urine gave a +++ test for proteinuria and haematuria (RBC 5–10/high-power field), but was negative for glycosuria. The 24-h urinary protein (UP) was 5.5 g. To determine the aetiology of the hypertension, a plasma renin and aldosterone, and thyroid function tests were all within normal limits.

She was treated with antihypertensive agents, but blood pressure was not controlled. During the 20th week of gestation, she decided to discontinue the pregnancy and the fetus was aborted. Her blood pressure returned within the normal range rapidly, and 2 weeks later she did not require any antihypertensive agents. Three weeks later, blood chemistry revealed that a TP of 34 g/l, albumin of 28 g/l, s-Cr of 76 µmol/l, and BUN of 2.5 mmol/l, and urinary tests revealed a UP of 0.7 g/day.

A renal biopsy was performed 3 weeks after the abortion. The specimen revealed segmental sclerosis, visceral epithelial caps, a double-contour appearance, swelling of the endothelium, adhesions, and mesangial deposits. In an immunofluorescence (IF) study, staining for antibodies against IgA, IgG, and C3 was positive in the mesangial area, while staining for IgM, C1q, C4, and fibrinogen was negative. Electron-microscopy revealed fusion of foot processes, swelling of endothelial cells, matrix widening, and mesangial dense deposits without mesangial proliferation (Figure 1). These results were consistent with IgA nephropathy and nephropathy of pre-eclampsia.

Pre-eclampsia is thought to produce renal alterations such as endothelial swelling and ballooning of the glomeruli, similar to focal glomerulosclerosis. In the present case the onset of proteinuria, generalized oedema, and hypertension occurred during the 18th week of gestation, and the hypertension and oedema disappeared 2 weeks after delivery. The pathological findings in renal biopsy are characteristic of the nephropathy of pre-eclampsia, while that mesangial deposits and IF findings are characteristic of IgA nephropathy. These results show that IgA nephropathy and nephropathy of pre-eclampsia coexisted in this patient. There is no evidence,