Successful endovascular repair of a subclavian artery pseudoaneurysm

Serdar Akgun1, Ali Civelek1, Feyyaz Baltacioglu2 and Gazanfer Ekici2

1Department of Cardiovascular Surgery and 2Department of Radiology, Marmara University School of Medicine, Istanbul, Turkey

Key words: complication of subclavian vein catheterization; endovascular repair of subclavian artery pseudoaneurysm

Introduction

Serious complications of central venous access occur in 0.4–9.9% of patients undergoing attempted central venepuncture [1]. Potential complications include failure to locate or cannulate the vein, puncture of the subclavian artery, misplacement of the catheter, pneumothorax, mediastinal haematoma, haemothorax and injury to adjacent nerves [2]. Pseudoaneurysm formation of the great vessels and the right subclavian artery is rare in patients undergoing central venepuncture [3]. The evolution of pseudoaneurysm is continued expansion and eventually rupture; therefore, pseudoaneurysms should be repaired to prevent inevitable rupture. Endovascular stent grafts offer an alternative approach to standard treatments for a variety of vascular pathologies including aneurysm.

We observed a case of a large subclavian artery pseudoaneurysm that caused pressure necrosis of the skin. The pseudoaneurysm occurred after subclavian vein catheterization for haemodialysis access and was successfully repaired using the endovascular approach.

Case

A 21-year-old male with a history of dialysis for 2 months via a right subclavian vein catheter was referred to our hospital because of a bleeding bullous lesion eroding the skin underneath the right clavicle (Figure 1). The patient was unable to walk because of sequel of polio at the age of 1 year. The catheter was removed 2 weeks after implantation because of thrombosis of the subclavian vein diagnosed by Doppler ultrasonography. The skin lesion appeared 1 week before admission, it enlarged rapidly causing erosion of the skin and blood leakage. The auscultation of the lesion revealed a pansystolic murmur around the lesion radiating to the sternum. After initial thoracic aortography via the right common femoral artery, selective angiography of the right subclavian artery was performed which showed an aneurysm, approximately 4 × 5 cm in size, originating from the upper contour of the right subclavian artery and extending anteriorly and superiorly (Figure 2). The clavicle provoked a depression of the aneurysm resulting in a bilobulated shape. The aneurysm had a neck of ~1.5–2 cm. Total occlusion of the right subclavian vein was observed by venography. As the aneurysm was false, repair was obviously necessary and the surgical approach risky, since the aneurysm had eroded the skin and there was a high risk of aneurysm rupture during dissection, therefore an endovascular repair was chosen. At first a 0.035 in. hydrophilic exchange guidewire (Terumo Europe N.V., Belgium) was passed through the lesion. A 28 mm balloon expandable PTFE-covered Jostent Peripheral Stent Graft (Jomed Implantate GmbH, Rangendingen, Germany) was then loaded onto a 6 × 30 mm balloon and introduced over the guidewire to the right subclavian artery against the neck of the aneurysm. We inflated the balloon and deployed the stent graft. Arteriography revealed complete exclusion
Subclavian artery pseudoaneurysm repair

Discussion

Pseudoaneurysm formation of the great vessels and the right subclavian artery is rare in patients undergoing central venepuncture [3]. Its complications include enlargement with resulting haemorrhage, arterial thrombosis, compression of adjacent neurovascular structures and erosion through the skin with external bleeding [4]. In some instances, urgent or emergency surgical intervention is necessary.

The treatment modalities are an open operation or endovascular repair. The subclavian artery may be approached through a supraclavicular incision with lateral extension or via retroclavicular subclavian exposure with or without a thoracotomy. Safe control of the proximal subclavian artery necessitates retroclavicular exposure with or without a thoracotomy, but care must be taken to protect the phrenic nerve and the thoracic duct [5]. Opening the lumen of a false aneurysm may provoke haemorrhage during dissection. Control of the aneurysm by temporary inflation of a balloon in the proximal part of the subclavian artery was contemplated as an adjunct to surgery to prevent excessive bleeding. There was concern, however, about the risk of embolization up the vertebral artery because of manipulation of its origin [6]. Therefore, endovascular repair of the pseudoaneurysm appeared to be the best option in this case.

The feasibility of transluminal endovascular grafting for the treatment of abdominal aortic aneurysms, subclavian artery aneurysms and arteriovenous fistulae, has been well documented [4,6–8]. Endovascular repair of a false aneurysm of the subclavian artery was first reported by May et al. [6]. Since then, progress in stent graft technique has been made. Reports on stent graft treatment of subclavian artery ‘aneurysms’ have dealt exclusively with pseudoaneurysms in the setting of iatrogenic or penetrating traumatic injuries and involving arteries originating from the aorta [6]. The advantages of this procedure include a minimally invasive approach, shortened hospitalization and cost effectiveness.

In conclusion, endovascular repair of false aneurysm of the subclavian artery by endovascular placement of a stented PTFE graft is an alternative surgical technique yielding satisfactory results even in emergency cases.

References


Received for publication: 24.3.99
Accepted in revised form: 23.4.99