Editorial Comments

Ten ways to ruin or market your oral scientific communication

Michel Jadoul

Department of Nephrology, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium

The impact of an oral ‘free’ communication at a scientific meeting depends on many factors. The main factor is probably the importance of the problem addressed and/or the originality of the data presented. A seminal work, representing a breakthrough in the field, is indeed very likely to arouse great interest. Not less important is the accuracy of the design of the study and of the methods used. All these characteristics are usually critical for the acceptance of the corresponding papers in leading, peer-reviewed biomedical journals. The way the presented data is communicated is also of importance. The presentation of submitted papers may frequently be improved, to increase the chance of acceptance, as reviewed in *Nephrology Dialysis Transplantation* a few years ago by Davison. Similarly, the success of an oral free communication at a scientific meeting not only depends on the substance but also on the form, a surprisingly neglected area in the training of many investigators.

Briefly discussed and illustrated below are 10 basic ways to either ruin (left-hand side) or improve (right-hand side) the chances of success of an oral scientific communication.

1st way
Waste time

The chairman will usually introduce the next communication by giving the name, affiliation, and country of origin of the speaker and co-workers, as well as the title of the communication. Immediately thereafter, project your first slide with the same information and read it slowly: this waste of time will reduce the risk of being asked important questions after your presentation.

2nd way
Ignore technical aspects

Do not put any mark on your slides to indicate their correct position in the carrousel for the slide projector. This is a waste of time when preparing slides. An optimal way to check whether the audience is ready to listen to your talk is represented on the first slide below.

Correspondence and offprint requests to: Michel Jadoul, Department of Nephrology, Cliniques Universitaires St Luc, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200 Brussels, Belgium. Email: jadoul@nefr.ucl.ac.be

© 2001 European Renal Association–European Dialysis and Transplant Association
Waste time (again!)

Present four to six slides of ‘Introduction’, followed by four slides of ‘Materials and Methods’. By doing so, you are virtually sure that, your time being over, you will be spared the need to present and discuss your results.

3rd way

Follow a balanced scheme

Follow the rule: one slide = 1 min and make a scheme of your talk. This will usually be as follows: introduction, background one slide and aim of the study one slide; materials and methods two to three slides; results four to five slides; summary and conclusion one to two slides, to meet the usual duration of 10 min presentation (=10 slides), followed by 5 min of discussion.

4th way

Make poorly readable slides

This will undoubtedly reduce the risk of being asked questions on your communication. Several such ‘optimal’ slides are illustrated below.

Make highly readable slides

The readability of your slides is of critical importance. Some general rules to be followed are given below.

(i) Each line of type should be as large as possible. The minimal size of letters should be 24, and 28 or more is highly desirable. Limit the use of capital letters. Reading words written in capital letters is more time consuming.

(ii) Avoid placing more than six to eight lines on a slide.

(iii) Imagine you are a participant in the back row; if at a distance of 4–5 m from your computer you cannot read easily your slides on the screen (diaporama PowerPoint®), they will not be readable by the participants in the back row of the congress room.

(iv) Use a limited number of colours, with good contrast between them. Avoid using both red and green on the same slide. Five to ten per cent of the audience is to some extent colour blind—even among doctors!

5th way

Make the data poorly understandable

Use as many abbreviations as possible, to make your slides look ‘scientific’.

If possible, try to use the same letter(s) to abbreviate different words, as illustrated in the below slide on which ‘R’ has more than six different meanings!

Make the data easy to understand

A title on the top of each slide, describing briefly the topic of this specific slide, is usually helpful. This will help the audience, including the (few!) temporarily inattentive colleagues, to follow your talk. Abbreviations should be used selectively. Their
number should be limited and their significance explained when used for the first time in your talk. Provide units for any measured data.

6th way

Make complicated slides

The more text or numbers there are on a slide, the higher the credibility of your presentation. If some part of the slide is free of text, add a few columns or lines with (if needed) irrelevant data (see ‘eighth way’ for an example).

7th way

Use colours indiscriminately

Use colours selectively

The use of colours should be meaningful, otherwise it will reduce rather than promote the attention of the audience.

Appropriate (selective) use of colours

The use of colours should be selective:
- the main text in one colour
- some key words in another colour
- references in a third colour

Jadoul M. Ten ways to ruin or market your oral scientific communication. Nephrol Dial Transplant, in press.
Avoid visualization of the data

A table with many lines and numbers with multiple (unnecessary) decimals will appear very ‘scientific’. As mentioned in the ‘sixth way’, do not hesitate to add unnecessary lines with less important data to use the left space.

Visualization = memorization

Unless the absolute values of the data are of critical importance, it is preferable to use figures rather than tables. This will greatly expand the impact of your communication (provided that the data is convincing) and will help the audience remember your main results. When explaining your slide, do not hesitate to mention explicitly the variables represented on the x and y axes.

Below are illustrated two examples of the beneficial impact of figures as compared with tables, using actual data from previous studies by the author [4,5].

| Prevalence of β2 microglobulin amyloidosis (Aβ2m) in hemodialysis patients |
|-----------------------------|---|---|---|---|---|---|
| Time on HD (months) | 1-24 | 25-48 | 49-72 | 73-96 | 97-120 | > 120 |
| N of patients | 14 | 15 | 6 | 9 | 2 | 8 |
| M / F | 10/4 | 6/9 | 4/2 | 7/2 | 1/1 | 7/1 |
| CTS(surgery) | 0/4 (0%) | 0/15 (0%) | 0/6 (0%) | 0/9 (0%) | 0/2 (0%) | 2/8 (25%) |
| Age (years) | mean | 66.14 | 66.26 | 51.33 | 62.66 | 56.00 | 46.87 |
| ± SD | 13.99 | 9.05 | 15.26 | 7.29 | 1.41 | 14.83 |
| N joints / pat. | mean | 2.71 | 2.67 | 3.17 | 2.67 | 5 | 2.75 |
| ± SD | 1.20 | 1.58 | 1.83 | 1.23 | 1.41 | 1.17 |
| Prevalence of Aβ2m (%) | 21 | 33 | 33 | 77 | 100 | 87 |

HD next to an HCV (+) patient is a risk factor for anti - HCV seroconversion

In unit A, patients assigned a fixed HD station : anti - HCV seroconversion observed only in patients dialyzed next to an anti - HCV (+) patient

(3 of 8 versus 0 of 30, $p < 0.02$)

Jadoul et al., Kidney Int 1993; 44: 1322-1326

Relax

When your slides are ready, go immediately to the swimming pool to promote primary (or secondary) cardiovascular prevention.

Repeat your talk in the presence of a few colleagues

As soon as your slides are available, have a general rehearsal in the presence of a few (preferably experienced) colleagues, trying to tell a story to the audience. The comments of your colleagues may help you to make the talk even more enjoyable and thus convincing (and sometimes to eradicate residual typographic errors).
Conclude ‘brilliantly’

Your brilliant talk deserves an appropriate crowning. This may consist of:

(i) either exaggerating the implications of your data, without any mention of the need for confirmation by other studies or of the existence of previous papers reaching an opposite conclusion, etc . . .

(ii) or even better introducing in your conclusion a major idea not supported at all by the data you have just shown.

Finally, a pathophysiological scheme, summarizing the complex and intricate pathogenesis of the disease may be particularly welcome at this stage.

Do not forget to take into account what you have learnt in the previous sections (see the slide below).

Conclude ‘appropriately’

To sum up and conclude your talk, show a single or at most two slides summarizing your main data and their potential implications, and acknowledging, if appropriate, the need for confirmatory or additional studies. This acknowledgement will increase, rather than decrease, the credibility of your talk.

Refrain from using too complicated pathophysiological schemes (as illustrated in the left-hand column).

Even though the content may be fully correct and up to date, it will not be understandable by the audience within the 1–2 min left for your conclusion. Prefer a simple, ‘take-home’ message as illustrated below.

The 10 ways discussed or illustrated in this paper concern just some of the basic requirements for a successful scientific communication. The best way to develop skills in this matter is to remain interested in the topic when attending scientific meetings.

Acknowledgements. The author wishes to express his deep gratitude to Professor Charles van Ypersele de Strihou for his teaching in this field (and others) [6].

References

2. Davison AM. How to improve your manuscript (or how to increase your chances of manuscript acceptance). Advice from an editor. *Nephrol Dial Transplant* 1995; 10: 1103–1106

