in the diagnosis of infected cysts [4]; 111indium-labelled leucocyte scans and fine needle aspiration and cytology may also be helpful. The final diagnosis was made by imaging in only 25 (41%) cases and by non-radiological tests in 15 (24.6%) cases, and so the place of non-imaging tests in the diagnosis of inter-current abdominal problems should not be overlooked. The measurement of inflammatory markers (i.e. C-reactive protein), white cell count, mid-stream urine (with blood cultures if pyrexial) is therefore recommended in all presentations with acute abdominal pain and/or haematuria.

Although clinical accuracy of diagnosis was generally good, absence of a consistent protocol for investigation resulted in frequent unnecessary investigations. We have, therefore, designed a simple algorithm incorporating clinical, laboratory and radiological assessment, that we are now implementing, for investigation of all such clinical presentations in ADPKD to avoid unnecessary diagnostic work up (Figure 1).

Conflict of interest statement. None declared.

1Department of Renal Medicine Diana Y. Y. Chiu1
2Department of Radiology Anne M. Whiteside1
Hope Hospital Janet Hegarty1
Stott Lane Graeme Wood2
Salford, Manchester Donal J. O'Donoghue1
UK Stephen Waldek2
Email: philip.kalra@srht.nhs.uk Hari Mamtora2
Philip A. Kalra1

doi:10.1093/ndt/gfl827

Advance Access publication 31 January 2007

Erythropoietin and its lost receptor

Sir,
Several reports have recently appeared in the literature, suggesting that commercially available anti-erythropoietin receptor (EpoR) antibodies may not be suitable for the immuno-histochemical detection of EpoR. Elliot et al.[1] have pointed out that H 194, M-20 and C-20 antibodies cannot be used to detect EpoR expression, as they cross-react with non-EpoR proteins due to their low specificity and affinity [1,2].
We tested three rabbit polyclonal anti-peptide anti-EpoR antibodies already investigated by Elliott, C-20, M-20 and H-194 (by Santa Cruz Biotechnology). In addition, we used a mouse monoclonal antibody, MAB 307 (by R&D).

The study was conducted on rat and human kidney, which expresses EpoR, and on human tubular tumoural cell cultures (769 P), which do not express EpoR, using western blotting (WB), immunofluorescence and immunoistochemistry. In WB, C-20 and H-194 recognized many non-specific bands with different molecular weights. M-20 detected a 59 kDa protein compatible with EpoR on renal tissue; in the 769 P cell line M-20 recognized only a 30 kDa band. MAB 307 identified a 59 kDa protein in renal tissue and no band in the cell line. Thus, only a comparative evaluation with WB using M-20 and/or MAB 307 antibodies could assess EpoR expression.

Immunoperoxidase staining conducted on formalin-fixed and paraflin-embedded rat and human renal tissue showed heterogeneous patterns. M-20 identified proximal tubular cells nucleus and cytoplasm, while the cell membranes showed a weaker staining (Figure 1). C-20 localized in distal tubular cells cytoplasm, while H-194 showed an intense staining in tubular brush border (Figure 2). MAB 307 did not show a specific staining. We expected a positive staining in endothelium of blood vessel and glomerular capillaries [3], but none of the tested antibodies marked glomerular endothelium and peri-tubular interstitial vessels.

In immunofluorescence C-20 antibody diffusely marked renal tissue. H-194 localized in the tubular cell bodies in the brush border and in glomerular endothelium. M-20 marked a limited number of tubules, both the cell membrane and the brush border, glomerular endothelium and podocytes. MAB 307 staining seems to be limited to a small portion of tubular basal membrane and involved the vessel wall.
Although fluorescence using M-20 or MAB 307 does not unequivocally localize EpoR, it can be used in association with WB to demonstrate whether the tissue expresses the EpoR, even in small quantities. Our data, therefore, appear to be in agreement with those of Elliott et al. [1] and should prompt greater caution in the interpretation of results obtained in immunohistochemistry using currently available antibodies. Far from being a simple speculative exercise, the careful definition of the receptor for Epo, whose functional activities go well beyond erythropoiesis [4] is of fundamental importance, especially in the field of neoplastic diseases [5–8].

Conflict of interest statement. None declared.