Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images

Kourosh M. Naeini, Whitney B. Pope, Timothy F. Cloughesy, Robert J. Harris, Albert Lai, Ascia Eskin, Reshmi Chowdhury, Heidi S. Phillips, Phioanh L. Nghiemphu, Yalda Behbahanian, and Benjamin M. Ellingson

Department of Radiological Sciences (K.M.N., W.B.P., R.J.H., Y.B., B.M.E.); Department of Biomedical Physics (R.J.H., B.M.E.); Department of Biomedical Engineering (B.M.E.); Department of Neurology (T.F.C., A.L., R.C., P.L.N.); Department of Human Genetics, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California (A.E.); Department of Tumor Biology and Angiogenesis, Genentech, Inc., San Francisco, California (H.S.P.)

Background. Subtypes of glioblastoma multiforme (GBM) based on genetic and molecular alterations are thought to cause alterations in anatomic MRI owing to downstream biological changes, such as edema production, blood–brain barrier breakdown, and necrosis. The purpose of the current study was to identify a potential relationship between imaging features and the mesenchymal (MES) GBM subtype, which has the worst patient prognosis.

Methods. MRIs from 46 patients with histologically confirmed GBM were retrospectively analyzed. The volume of contrast enhancement, regions of central necrosis, and hyperintensity of T2 FLAIR were measured. Additionally, the ratio of T2/FLAIR hyperintense volume to the volume of contrast enhancement and necrosis was calculated.

Results. The volume of contrast enhancement, volume of central necrosis, combined volume of contrast enhancement and central necrosis, and the ratio of T2/FLAIR to contrast enhancement and necrosis were significantly different in MES compared with non-MES GBM (Mann–Whitney, \( P < .05 \)). Receiver-operator characteristics indicated that these 4 metrics were all significant predictors of the MES phenotype. The volume ratio of T2 hyperintensity to contrast enhancement and central necrosis was significantly lower in MES vs non-MES GBM \( (P < .0001) \), was a significant predictor of the MES phenotype \( (\text{area under the curve} = 0.93, P < .001) \), and could be used to stratify short- and long-term overall survival \( (\log\text{-rank}, P = .0064 \text{ using cutoff of 3.0}) \). These trends were also present when excluding isocitrate dehydrogenase 1 mutant tumors and incorporating covariates such as age and KPS score.

Conclusions. Results suggest that volume ratio may be a simple, cost-effective, and noninvasive biomarker for quickly identifying MES GBM.

Keywords: GBM, glioblastoma, IDH1, mesenchymal, molecular subtypes, MRI, radiogenomics.

Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability, intratumoral histopathological variability, and relatively unpredictable clinical behavior. According to a recent study by The Cancer Genome Atlas Research Network, GBM should not be considered a single disease but rather should be categorized by molecular subtypes, each with a different sensitivity to therapy. For example, patients whose tumors have a signature enriched in genes associated with neural development (proneural [PN])
have been shown to have better survival compared with those who have signatures resembling the mesenchyme (mesenchymal [MES]),3 potentially related to increased treatment resistance in the latter.4 Based on the significantly different prognoses in MES compared with the other phenotypes, we hypothesized that an imaging signature derived from standard preoperative MRIs may be able to noninvasively identify GBM with the MES signature.

Radiogenomics is a relatively new discipline that aims to establish empirical and biological relationships between radiographic imaging features and “-omic” signatures, including morphometric, genomic, molecular, and proteomic characteristics. Several links between well-known radiographic features of tumors and “-omic” signatures have been established in a variety of cancer types, including hepatocellular carcinoma,5 liver cancer,6 lung cancer,7 and GBM.8–10 Mutant gliomas of isocitrate dehydrogenase (IDH)1R132, which are associated with secondary GBM and a favorable prognosis, have been shown to be associated primarily with the PN subtype.11 Additionally, links have been established among the amount of contrast enhancement, tumor location, and IDH1R132 mutational status.12 Based on these relationships, we hypothesized that the volume of T2 hyperintensity and contrast enhancement may provide insight into whether a tumor has the MES molecular signature. The current pilot study examined the potential relationship between lesion volume measurements and molecular subtypes of GBM in a total of 46 patients obtained from our institution’s neuro-oncology database.

Methods

Patients

A total of 46 patients with histologically confirmed de novo (primary) GBM and molecular data available were retrospectively examined from our institution’s neuro-oncology database from April 2000 through December 2011. These patients were a subset of a larger cohort used in a previous study examining IDH1 December 2011. These patients were a subset of a neuro-oncology database from April 2000 through were retrospectively examined from our institution’s institution’s neuro-oncology database.

Surgical, postcontrast T1-weighted images and either T2-weighted or T2-weighted/fluid attenuated inversion recovery (FLAIR) images were acquired using standard pulse sequences on either 1.5T MR (Siemens Avanto, Siemens Sonata, Siemens Symphony, Siemens Magnetom Vision, Siemens Healthcare; GE Genesis, GE Signa Excite, GE Signa HDx, GE Medical Systems; Philips Intera, Philips Medical Systems) or 3.0T MR (Siemens Trio, Siemens Healthcare). Postcontrast T1-weighted images were acquired after injection of either gadopentetate dimeglumine (Magnevist, Bayer Schering Pharma AG) or gadobenate dimeglumine (Multihance, Bracco Diagnostics), administered at a dose of 0.1 mmol/kg, using an echo time (TE) of 1.5–21 ms, a repetition time (TR) of 5.5–450 ms, and slice thickness of 1.5–5 mm. T2-weighted images were acquired using a TE of 89–183 ms, a TR of 3500–10 000 ms, and slice thickness of 3–5 mm. T2-weighted FLAIR images were acquired using an inversion time of 2200 ms, a TE of 90–150 ms, a TR of 5000–10 000 ms, and slice thickness of 3–5 mm.

Regions of Interest

Three regions of interest were examined using custom scripts in Analysis of Functional NeuroImages software (http://afni.nimh.nih.gov/afni): (i) contrast enhancement (hyperintensity), (ii) central necrosis (hypointensity) on postcontrast T1-weighted images, and (iii) T2 hyperintensity (excluding necrosis and contrast enhancement) on either T2-weighted or T2-weighted/FLAIR images (Fig. 1). The investigator who performed the volumetric analysis (K.N.) and 2 investigators who independently verified the contours (W.B.P. and B.M.E.) were all blinded to the phenotype results until completion of the study. Additionally, the ratio of T2 hyperintense lesion volume to contrast enhancement plus necrosis volume [FLAIR/(enhancement + necrosis)] was calculated and explored as an additional biomarker for predicting GBM subtypes.

Molecular Subtypes

Gene expression microarray analysis was performed using standard, previously published preparation and analysis protocols.15,16 Gene expression subclassification was performed using the Hierarchical Clustering (HC) classification determined via the gene voting strategy established by Freije et al15 and specific subclasses defined by Phillips et al.3 Briefly, the mean value of each probe set was evaluated from all samples within the specific microarray platform. Then, probe sets from each sample were assigned a “yes” or “no” vote if that probe set’s value was above or below the probe set mean. Next, the yes or no votes for the probe sets were tallied and used to categorize every GBM into 1 of 3 HC molecular subtypes. Subtype names were chosen based on the expression of signature genes: PN, proliferative (PROLIF), and MES. The PN subtype typically has histological markers of Olig2, DLL3, and BCAN; lacks any particular chromosome gain or loss; and has normal epidermal growth factor receptor (EGFR) and intact phosphatase and tensin homolog (PTEN). The PROLIF phenotype has histological markers for proliferating cell nuclear antigen and
of central necrosis, defined by T1 hypointensity on post-contrast T1-weighted images, was not significantly different among subtypes, after taking into consideration Bonferroni correction (Kruskal–Wallis, $P = .0252$; Fig. 2E); however, the MES phenotype had a significantly higher volume of necrosis compared with the PN and PROLIF subtypes after they were pooled into a single group (Mann–Whitney test, $P = .0071$; Fig. 2F).

A statistically significant difference was also observed among subtypes when examining the combined volume of contrast enhancement and necrosis (Kruskal–Wallis, $P = .0012$; Fig. 3B). Gene expression subtypes also differed significantly when combining these volumetric features by calculating the ratio of T2 hyperintense volume to the total contrast-enhancing and necrotic volume (Kruskal–Wallis, $P < .0001$; Fig. 3C). Dunn’s test for multiple comparisons suggested a significant difference in this ratio between the MES and both PN and PROLIF phenotypes (Dunn’s test, $P < .05$ for MES vs PN and MES vs PROLIF), which was also the case when PN and PROLIF were pooled into a single group (Mann–Whitney, $P < .0001$; Fig. 3D).

ROC analysis suggested that T2/FLAIR hyperintense volume was not a significant predictor of MES versus non-MES subtypes (ROC analysis, AUC = 0.59, $P = .3014$; Fig. 4A); however, both the volume of contrast enhancement (ROC analysis, AUC = 0.78, $P = .0013$; Fig. 4A) and central necrosis (ROC analysis, AUC = 0.73, $P = .0069$; Fig. 4A) could differentiate MES from non-MES subtypes with high sensitivity and/or specificity. In particular, a volume of contrast enhancement higher than 22 cc could identify GBM with the MES subtype with 83% sensitivity and 68% specificity, whereas a volume of central necrosis >1.5 cc could identify the MES phenotype with a sensitivity of 46% but a specificity of 91%. Similar to individual features, the combined volume of contrast enhancement and central necrosis could reliably differentiate the MES from non-MES phenotypes (ROC analysis, AUC = 0.78, $P = .0011$; Fig. 4B). Specifically, GBM with the MES phenotype was identified with an 80% sensitivity and 64% specificity when tumors were classified as having a combined volume of contrast enhancement and central necrosis exceeding 35 cc. The ratio of T2/FLAIR hyperintense volume to contrast-enhancing volume including central necrosis was a very strong predictor of the MES phenotype, showing a sensitivity of 83% and a specificity of 87% using a cutoff of 2.3, a sensitivity of 100% and specificity of 60% using a threshold.
of 1.0, and a sensitivity of 71% and specificity of 100% using a cutoff of 3.0 (ROC analysis, AUC = 0.93, \( P < .0001 \); Fig. 4C). There were significant differences among the volume of contrast enhancement, the volume of T2/FLAIR hyperintensity, and the volume ratio with respect to ROC performance (1-way ANOVA, \( P = .0149 \); Fig. 4D). Specifically, the volume ratio had a significantly higher AUC compared with the T2/FLAIR hyperintense volume (Tukey’s test, \( P < .05 \)).

As previously documented, MES phenotypes had a significantly shorter OS compared with non-MES tumors (log-rank, \( P = .0026 \); Fig. 4E). Analysis by multivariate Cox proportional hazards ratio further suggested that the MES subtype had significantly shorter OS compared with non-MES subtypes when the gene expression subtypes were combined with age and KPS (Cox regression; MES vs non-MES covariate, \( P = .0038 \); age covariate, \( P = .5182 \); KPS covariate, \( P = .0878 \)). A ratio of T2/FLAIR hyperintense volume to contrast-enhancing and necrosis volume higher than 3.0, which had a sensitivity of 71% and a specificity of 100% for predicting the MES subtype, was also able to stratify patients based on OS (log-rank, \( P = .0064 \); Fig. 4F), where patients with a volume ratio greater than 3.0 were more likely to live longer than...
patients with a volume ratio less than 3.0. Multivariate Cox proportional hazards ratio analysis confirmed the ability of a volume ratio of 3.0 to independently stratify short- and long-term OS when considering age and KPS (Cox regression; ratio \( \leq \) 3.0 vs ratio > 3.0 covariate, \( P = .0500 \); age covariate, \( P = .9617 \); KPS covariate \( = 0.1410 \)).

Since IDH1 mutant GBM is known to be primarily of the non-MES subtype and to have very distinct imaging features, we also tested whether the same volumetric differences between MES and non-MES groups would occur when excluding these patients. Similar to the whole population examined in this study (\( N = 46 \)), the combined volume of contrast enhancement and central necrosis was significantly different between MES and non-MES tumors (Mann–Whitney, \( P = .0053 \)). ROC analysis also confirmed that the combined volume of contrast enhancement and central necrosis was a significant predictor of the MES phenotype (ROC analysis, AUC = 0.76, \( P = .0051 \)), showing a 76% sensitivity and 65% specificity using a volume threshold of 33 cc. T2/FLAIR hyperintense volume was not significantly different between MES and non-MES phenotypes (Mann–Whitney, \( P = .9129 \)), which was also confirmed with ROC analysis (AUC = 0.51, \( P = .9020 \)). After excluding IDH1 mutant tumors, the volume ratio of T2/FLAIR hyperintensity to contrast enhancement and necrosis was still significantly different.
between MES and non-MES phenotypes (Mann–Whitney, \( P < .0001 \)). ROC analysis confirmed that this ratio was a strong predictor of the MES phenotype (ROC analysis, AUC = 0.92, \( P < .0001 \)), showing an 88% sensitivity and 78% specificity using a threshold of 1.5 and an 82% sensitivity and 87% specificity using a threshold of 2.3. Together, these results suggest that the ratio of T2/FLAIR hyperintense volume to the volume of contrast enhancement and central necrosis may be a simple, yet powerful, biomarker for predicting OS and differentiating MES from non-MES GBM phenotypes, regardless of IDH1 mutation status.

**Discussion**

Molecular subtypes of GBM have different prognoses and potentially different susceptibility to specific treatments. Currently these phenotypes are determined by microarray analysis, which requires a significant amount of tumor tissue obtained at resection or biopsy. Thus noninvasive surrogates for molecular subtypes of GBM could be clinically useful. In this study, we investigated the ability of quantitative volumetric measurements of tumor burden on standard pre-surgical anatomic MR images to differentiate MES from non-MES GBM phenotypes. Results suggest the volume of contrast enhancement as well as the volume ratio of T2/FLAIR hyperintensity to contrast enhancement to be powerful biomarkers for the MES phenotype.

Previous studies have demonstrated molecular correlates\(^7\) of imaging features including multifocality,\(^18\) enhancement,\(^8\) location,\(^11,19\) and edema.\(^9,20\) Recently, several molecular subtypes of GBM have been established, based on gene expression data from microarray analysis. The MES phenotype\(^3\) is associated with poor prognosis and tends to be present at tumor recurrence regardless of the phenotype at initial presentation. MES GBM tends to have elevated expression levels of VEGF transcripts. As VEGF is a potent mediator of vascular permeability and is induced by hypoxia, it is plausible to hypothesize that MES tumors have higher volumes of contrast enhancement and necrosis compared with the other subtypes. Additionally, IDH1 mutant gliomas tend to be of the PN phenotype, and these tumors typically lack significant contrast enhancement. Consistent with this hypothesis, MES GBM patients in the current study appeared to have a larger volume of contrast enhancement and macroscopic necrosis compared with non-MES phenotypes; however, results
from the current study suggest that this trend was independent of IDH1 mutation status.

Although not statistically significant, non-MES phenotypes tended to have slightly higher volumes of T2 hyperintensity compared with MES GBM. Since we did not differentiate between non-enhancing tumor burden and vasogenic edema, the reason for this slight difference is not entirely clear. Since MES tumors tend to express more VEGF and tend to be more necrotic, it is conceivable that MES tumors may have more edema compared with non-MES GBM. However, IDH1 tumors tend to be of the PN phenotype and typically lack contrast enhancement but may have a very large non-enhancing component. The lack of statistical differences among phenotypes may therefore be due to the fact that both of these competing processes result in T2 hyperintensity, and we did not selectively differentiate between them. These results

Fig. 4. Receiver-operator characteristics and survival analysis. (A) ROC analysis illustrating that the volume of contrast enhancement and central necrosis is a significant predictor of the MES phenotype (AUC = 0.78, P = .0022, and AUC = 0.73; P = .0069, respectively), whereas the volume of T2/FLAIR hyperintensity is not (AUC = 0.59, P = .3014). (B) ROC analysis of the combined contrast-enhancing and central necrotic volume was a significant predictor of the MES phenotype (AUC = 0.78, P = .0011). (C) ROC analysis indicates that the volume ratio of T2/FLAIR hyperintensity to contrast enhancement and necrosis is a significant predictor of the MES phenotype (AUC = 0.93, P < .0001). (D) When comparing the AUCs among the 5 biomarkers, results suggested that the volume ratio had significantly better ROC performance compared with T2/FLAIR hyperintense volume (Tukey’s test, P = .015). (E) Log-rank analysis of Kaplan–Meier data indicated a significant OS advantage for non-MES compared with MES GBM (log-rank, P = .0026). (F) A volume ratio of 3.0, corresponding to a 71% sensitivity and 100% specificity for predicting the MES phenotype, could also be used to stratify patients by OS (log-rank, P = .0064).
appear consistent with a recent study by Zinn et al.,
which found no significant survival differences when
univariate analysis of T2/FLAIR hyperintense volume
was performed.

The volume of contrast enhancement was larger
and the volume of T2 hyperintensity was smaller in the
MES vs non-MES. Specifically, MES tumors tended to
have a lower ratio of T2/FLAIR hyperintense volume
to volume of contrast enhancement and necrosis com-
pared with non-MES. Using a ratio cutoff of 1.0, this
biomarker had a sensitivity of 100% and a specificity of
60%. However, when a ratio cutoff of 2.3 was
used, this biomarker had slightly lower sensitivity
(83%), but a substantially higher specificity (87%).
These results suggest that a simple volume ratio T2
hyperintensity to contrast-enhancing tumor burden
may be a powerful biomarker for quickly, cost-
effectively, and noninvasively identifying MES from
non-MES GBM in the clinic and, by extension, OS.

Although results appear quite robust, it is important
to point out a few study limitations that may have influ-
enced our results. Owing to the retrospective nature of
the current study, we were unable to standardize image
acquisition protocols. Thus, differences in slice thickness,
sparing, contrast agent concentration, and scan param-
ters may have led to measurable errors in our estimates
of tumor volume. Additionally, as previously mentioned,
we did not differentiate between edema and non-
enhancing tumor burden on T2 or FLAIR images. This
lack of differentiation could have conceivably reduced
our sensitivity to differences between MES and non-MES
phenotypes, since MES tumors are likely to
have more edema, whereas non-MES tumors may have
more non-enhancing tumor burden.

**Conclusion**

We retrospectively analyzed 46 de novo GBM patients
with gene array information and defined volumes of con-
trast enhancement, central necrosis, and T2/FLAIR
hyperintensity. The ratio of T2/FLAIR volume to
contrast-enhancing and necrotic volume was also calculat-
ed. The volume ratio was more effective than any of the
other factors in stratifying between MES and non-MES
subtypes. This study suggests that the volume ratio can
be used as a biomarker for the MES GBM subtype.

**Conflict of interest statement.** None declared.

**Funding**

This work was supported by a National Institutes of
Health/National Cancer Institute grant no. R21CA167354 (B.M.E.); a UCLA Institute for
Molecular Medicine Seed Grant (B.M.E.); a UCLA Radiology Exploratory Research Grant (B.M.E.); a
University of California California Cancer Research Coordinating Committee Grant (B.M.E.); an ACRIN Young
Investigator Initiative Grant (B.M.E.); Art of the Brain (T.F.C.); the Ziering Family Foundation in memory of
Sigi Ziering (T.F.C.); the Singleton Family Foundation (T.F.C.); and the Clarence Klein Fund for Neuro-
Oncology (T.F.C.).

**References**

molecularly and clinically distinct subtypes of glioblastoma multiforme.

2. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis
determines clinically relevant subtypes of glioblastoma characterized by
abnormalities in PDGFRα, IDH1, EGFR, and NF1. *Cancer Cell.*

glioma predict prognosis, delineate a pattern of disease progression, and

4. Bhat KP, Salazar KL, Balasubramaniyam V, et al. The transcriptional coac-
tivator TAZ regulates mesenchymal differentiation in malignant glioma.

5. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to
identify imaging phenotypes associated with drug response gene ex-
pression programs in hepatocellular carcinoma. *J Vasc Interv Radiol.*

6. Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in

7. Das AK, Bell BH, Nireodi CS, Story MD, Minna JD. Radiogenomics pre-
dicting tumor responses to radiotherapy in lung cancer. *Semin Radiat

8. Pope WB, Chen JH, Dong J, et al. Relationship between gene expres-
sion and enhancement in glioblastoma multiforme: exploratory DNA

9. Zinn PO, Mahajan B, Sathyan P, et al. Radiogenomic mapping of
edema/cellular invasion MRI-phenotypes in glioblastoma multiforme.

surrogates for brain tumor gene-expression modules. *Proc Natl Acad Sci U S A.*

evolution of IDH1 mutant glioblastoma from a distinct cell of origin.

enhancement, edema, IDH1 mutational status, MGMT promoter meth-

temozolomide during and after radiation therapy for patients with newly

14. Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope
WB. Quantitative volumetric analysis of conventional MRI response in
recurrent glioblastoma treated with bevacizumab. *Neuro Oncol.*


