Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma

Ulrik Lassen, Olivier L. Chinot, Catherine McBain, Morten Mau-Sørensen, Vibeke Andrée Larsen, Maryline Barrie, Patrick Roth, Oliver Krieter, Ka Wang, Kai Habben, Jean Tessier, Angelika Lahr, and Michael Weller

Department of Oncology, Rigshospitalet, Copenhagen, Denmark (U.L., M.M.-S.); Department of Radiology, Rigshospitalet, Copenhagen, Denmark (V.A.L.); Aix-Marseille University A.P.-H.M., Department of Neuro-Oncology, University Hospital Timone, Marseille, France (O.L.C., M.B.); Department of Clinical Oncology, The Christie Hospital N.H.S Foundation Trust, Manchester, England (C.M.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.); Roche Diagnostics GmbH, Penzberg, Germany (O.K., K.H., A.L.); Hoffmann La Roche Pharmaceuticals, Nutley, New Jersey (K.W.); F. Hoffmann-La Roche Ltd, Basel, Switzerland (J.T.)

Corresponding Author: Ulrik Lassen, MD, PhD, Department of Oncology 5072, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (ulrik.lassen@rh.regionh.dk).

Background. We conducted a phase 1 dose-escalation study of RO5323441, a novel antiplacental growth factor (PlGF) monoclonal antibody, to establish the recommended dose for use with bevacizumab and to investigate the pharmacokinetics, pharmacodynamics, safety/tolerability, and preliminary clinical efficacy of the combination.

Methods. Twenty-two participants with histologically confirmed glioblastoma in first relapse were treated every 2 weeks with RO5323441 (625 mg, 1250 mg, or 2500 mg) plus bevacizumab (10 mg/kg). A standard 3+3 dose-escalation trial design was used.

Results. RO5323441 combined with bevacizumab was generally well tolerated, and the maximum tolerated dose was not reached. Two participants experienced dose-limiting toxicities (grade 3 meningitis associated with spinal fluid leak [1250 mg] and grade 3 cerebral infarction [2500 mg]). Common adverse events included hypertension (14 participants, 64%), headache (12 participants, 55%), dysphonia (11 participants, 50%) and fatigue (6 participants, 27%). The pharmacokinetics of RO5323441 were linear, over-the-dose range, and bevacizumab exposure was unaffected by RO5323441 coadministration. Modulation of plasmatic angiogenic proteins, with increases in VEGFA and decreases in FLT4, was observed. Dynamic contrast-enhanced/diffusion-weighted MRI revealed large decreases in vascular parameters that were maintained through the dosing period. Combination therapy achieved an overall response rate of 22.7%, including one complete response, and median progression-free and overall survival of 3.5 and 8.5 months, respectively.

Conclusion. The toxicity profile of RO5323441 plus bevacizumab was acceptable and manageable. The observed clinical activity of the combination does not appear to improve on that obtained with single-agent bevacizumab in patients with recurrent glioblastoma.

Keywords: bevacizumab, dose-escalation study, glioblastoma, placental growth factor, RO5323441.
bevacizumab, which is both active and well tolerated in pa-
tients with glioblastoma. Based on the durable objective re-
sponse rates (ORRs) demonstrated in two phase 2 trials10,11 in
2009, the US Food and Drug Administration granted acceler-
ated approval of single-agent bevacizumab for the treatment of
patients with progressive glioblastoma following prior ther-
apy.12 However, eventual disease progression is inevitable
because of the emergence of resistance to VEGF and VEGFR re-
ceptor (VEGFR/KDR)-directed therapy.13

Simultaneous blockade of multiple angiogenic pathways
might improve efficacy and reduce therapeutic resistance. Ev-
idence indicates that PlGF is upregulated in response to VEGF(R)
inhibition, supporting the development of combined therapy
that targets both VEGFA and PlGF.14,15 RO5323441 (RG7334/
TB-403) is a humanized recombinant immunoglobulin G1
(IgG1) anti-PlGF monoclonal antibody. Unlike VEGF, PlGF selec-
tively binds VEGFR1 (FLT1) and its co-receptors neuropilin-1
(NRP1) and -2 (NRP2).16 Preclinical studies have shown that
RO5323441 inhibits the growth of VEGF blockade-resistant tu-
mors without affecting healthy vessels.16 RO5323441 is also
capable of enhancing the efficacy of chemotherapy and
VEGFR inhibitors in vivo and inhibiting angiogenesis and
tumor cell motility.16,17 Single-dose RO5323441 displayed a fa-
vorable safety profile and dose-linear pharmacokinetics (PK) in
a first-in-human dose-escalation trial.18 A subsequent phase 2
study of 23 patients with advanced solid tumors showed that
RO5323441 was well tolerated up to a dose of 30 mg/kg every
3 weeks. No dose-limiting toxicities (DLTs) were reported, and
hence the maximum tolerated dose (MTD) was not reached.19
PK analysis confirmed the dose-proportional exposure of
RO5323441 with a terminal half-life of 9–14 days.

Here we report the results of a phase 1 study that investigat-
ed RO5323441 combined with bevacizumab in patients with
recurrent glioblastoma. The primary objective was to establish
the recommended dose of RO5323441 for use with beva-
cizumab. Secondary objectives included evaluation of the PK,
pharmacodynamics (PD), safety/tolerability, and preliminary
efficacy of the combination treatment.

Methods

Study Design

Study NCT01308684 was a phase 1b, open-label, dose-escalation
multicenter study of RO5323441 combined with bevacizumab
in patients with recurrent glioblastoma. The study was con-
ducted at 4 centers in Switzerland, France, Denmark, and the
United Kingdom. Local ethics committee approval was ob-
tained, and all participants were able to provide their own writ-
ten informed consent. The study was conducted in accordance
with Good Clinical Practice and the Declaration of Helsinki.

From day 1, 3 fixed doses of RO5323441 (625, 1250, and
2500 mg) were administered once every 2 weeks (q2w) with
10 mg/kg bevacizumab. A standard 3 + 3 dose-escalation
study design was used to determine the MTD based on the oc-
currence of DLTs. At the MTD or top dose level (set at 2500 mg),
6 additional participants were enrolled into an expansion co-
hort to further evaluate safety/tolerability, PK, and PD. This co-
hort received pretreatment with single-agent bevacizumab
(10 mg/kg) on day −14 and day 1, single-agent RO5323441
(2500 mg) on day −2 with combination therapy given q2w
from day 15 onwards. This dosing schedule was selected to
allow us to first measure the PD effects of bevacizumab mono-
therapy, after which any additional PD effect due to combina-
tion dosing with RO5323441 could be determined. Participants
continued treatment until disease progression, unacceptable
toxicity, investigator decision, or patient refusal.

Patients

Eligible patients were ≥18 years of age with histologically con-
firmed glioblastoma in first relapse and radiographic evidence
of disease progression. Patients had already received standard
frontline radiotherapy and temozolomide (TMZ) and had a Kar-
nofsky performance status ≥70%, adequate hematological
(absolute neutrophil count ≥1500/μL; platelets ≥100 000/μL),
and hepatic and renal function. Following radio-chemotherapy,
a minimum treatment interval of 12 weeks was required to re-
duce the likelihood of pseudoprogression. Participants receiving
corticosteroids had to be on a stable or decreasing dose for ≥5
days before a baseline MRI scan was conducted.

Exclusion criteria included previous treatment with PlGF/
VEGFR targeting agents, cilengitide, enzastaurin, or intracere-
bral agents; MRI evidence of recent brain hemorrhage, uncon-
trolled arterial hypertension or prior history of hypertensive
crisis/encephalopathy; prior bleeding diathesis or coagulop-
athy; major surgery and hemoptysis within 1 month; or a
history of significant cerebrovascular/cardiovascular disease,
abdominal fistula, gastrointestinal perforation, or intracranial
abscess within 6 months.

Study Drug Administration

RO5323441 and bevacizumab were administered as continu-
ous intravenous (IV) infusions. RO5323441 was administered
immediately prior to bevacizumab.

Safety Assessments

The participants were seen before each study drug administra-
tion and weekly during the first 4 weeks. Safety assessments
included physical (performance status, vital signs) and labora-
tory examinations as well as twice-daily measurement of blood
pressure for the first 4 weeks. Baseline and end-of-study as-
sements included electrocardiograms (ECGs) and lower ex-
tremity ultrasounds. Adverse events (AEs) were defined
according to the NCI Common Terminology Criteria for AEs
(CTCAE), version 4.0.20

Definition of Dose-limiting Toxicity and Maximum
Tolerated Dose

A DLT was defined as a study drug-related CTCAE that occurred
during the first 28 days of treatment with RO5323441 plus bev-
cizumab. These included: grade (G) 4 neutropenia or thrombo-
cytopenia; G3 thrombocytopenia with bleeding; febrile
neutropenia and/or documented infection requiring IV antibiot-
ics; any nonhematological G4 event or G3 event that caused a
dosing delay of ≥7 days (except for G3 nausea/vomiting, diar-
ea, and skin AEs without adequate supportive care measures);
was performed locally, and scans were interpreted by a single radiologist at each site wherever possible. Best ORR, disease control rate (DCR), median progression-free survival (PFS), 6-month PFS rate (PFS-6), and median overall survival (OS) were calculated. DCR was defined as the rate of combined complete responses, partial responses, and stable disease as assessed by RANO criteria.

Statistical Considerations
All participants who received at least one dose of study medication were included in the safety and efficacy populations. DCE-/DW-MRI parameters were evaluated using a within-patient change from baseline. Median time-to-event for PFS and OS was analyzed using Kaplan-Meier estimates.

Results

Participant Characteristics and Treatment
Twenty-two participants were enrolled into 3 dose groups (Table 1). All participants had received previous TMZ treatment with radiotherapy after surgery. All participants received 10 mg/kg bevacizumab. Cumulative RO5323441 doses ranged from 2.5 g to 60 g. Participants received a median of 8 doses (range, 1–27 doses) of both RO5323441 and bevacizumab. Sixteen participants discontinued the study due to progressive disease, one withdrew consent, and 2 patients discontinued the study due to DLTs. Three other participants were withdrawn by the investigator after complete metabolic responses on 18F-FDG PET scans after they had experienced objective anatomic responses (2 complete responses, one partial response) for up to 18 months while on study treatment. These participants were censored in PFS and OS analyses.

Safety
Two DLTs were reported in 2 participants. One participant experienced G3 meningitis associated with cerebrospinal fluid (CSF) leak 12 days after the second dose of RO5323441 (1250 mg) and bevacizumab. This participant had undergone surgery to resect the right uncus 1 month prior to first dose of study drug. The epidural/subgaleal CSF leakage observed at the time of meningitis was first noted 6 weeks previously, and it was believed that bevacizumab might have caused or compromised regression of preexisting CSF leakage that enhanced the risk of infection. The second DLT (G3 cerebral infarction) occurred 5 days after the first dose of combination therapy (2500 mg RO5323441). No MTD was reached, and the highest dose of RO5323441 tested was 2500 mg. Sixteen (73%) participants died due to disease progression following study discontinuation, whereas the remaining participants were alive.

One hundred forty-six AEs were reported in 21 participants (Table 2) including 31 G3/4 AEs (in 17 participants). Fifty-five study drug-related AEs occurred in 20 participants including hypertension (13 participants, 59%), dysphonia (11 participants, 50%), epistaxis (4 participants, 18%) and fatigue (3 participants, 14%). The incidence and severity of AEs and drug-related AEs were similar across dosing groups. Of the 21 serious AEs (SAEs) reported in 13 participants, only hypertension,
Fig. 1. Effect of antiangiogenic treatment on DCE-MRI and DW-MRI parameters for the 6 participants (7 tumors) in the expansion cohort. DCE-MRI/DW-MRI was performed twice at baseline and prior to any scheduled study drug on day −2 (2 weeks after the first dose of single-agent bevacizumab), day 1, day 15, and days 53–55 (A). Overall relative change from baseline in median AUC\(_{\text{BN}}\) (B) and individual profiles for the relative change from baseline in median AUC\(_{\text{BN}}\) (C), median \(y_e\) (D), and median ADC (E) are indicated. Abbreviations: ADC, water diffusion coefficient; AUC\(_{\text{BN}}\), area under the gadolinium concentration curve normalized with plasma input function; BL, baseline; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; DW-MRI, diffusion-weighted magnetic resonance imaging; PD, progressive disease; q2w, once every 2 weeks; \(y_e\), fractional extracellular extravascular volume.

Table 1. Patient characteristics (N = 22)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RO5323441 Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>625 mg (N = 4)</td>
</tr>
<tr>
<td></td>
<td>1250 mg (N = 6)</td>
</tr>
<tr>
<td></td>
<td>2500 mg (N = 12(^a))</td>
</tr>
<tr>
<td></td>
<td>All (N = 22)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Female</td>
<td>2 (50)</td>
</tr>
<tr>
<td></td>
<td>5 (83)</td>
</tr>
<tr>
<td></td>
<td>1 (17)</td>
</tr>
<tr>
<td></td>
<td>9 (75)</td>
</tr>
<tr>
<td></td>
<td>3 (25)</td>
</tr>
<tr>
<td></td>
<td>6 (27)</td>
</tr>
<tr>
<td></td>
<td>16 (73)</td>
</tr>
<tr>
<td>Age, median (range)</td>
<td>60.0 (50–66)</td>
</tr>
<tr>
<td></td>
<td>58.0 (41–69)</td>
</tr>
<tr>
<td></td>
<td>57.0 (37–72)</td>
</tr>
<tr>
<td></td>
<td>58.0 (37–72)</td>
</tr>
<tr>
<td>Weight in kg, median (range)</td>
<td>73.0 (48.6–92.8)</td>
</tr>
<tr>
<td></td>
<td>83.5 (69.4–95.0)</td>
</tr>
<tr>
<td></td>
<td>75.0 (62.0–98.0)</td>
</tr>
<tr>
<td></td>
<td>79.5 (48.6–98.0)</td>
</tr>
<tr>
<td>BMI in kg/m(^2), median (range)</td>
<td>24.4 (18.8–26.3)</td>
</tr>
<tr>
<td></td>
<td>26.4 (22.7–31.3)</td>
</tr>
<tr>
<td></td>
<td>25.6 (20.0–31.4)</td>
</tr>
<tr>
<td></td>
<td>25.7 (18.8–31.4)</td>
</tr>
<tr>
<td>Corticosteroid use n (%)</td>
<td>2 (50)</td>
</tr>
<tr>
<td></td>
<td>3 (50)</td>
</tr>
<tr>
<td></td>
<td>11 (92)</td>
</tr>
<tr>
<td></td>
<td>16 (73)</td>
</tr>
</tbody>
</table>

Abbreviation: BMI, body mass index

\(^a\)Includes patients from both the dose-escalation (n = 6) and expansion cohort parts (n = 6) of the study.
pulmonary embolism, confusion, and pneumonia occurred in more than one participant. All SAEs of hypertension and pulmonary embolism, meningitis associated with spinal fluid leak, upper abdominal pain, and cerebral infarction were considered to be study drug related. Four other SAEs were deemed possibly related but unexpected.

There were no apparent dose-related changes in vital signs, physical examinations, performance status, ECGs, or laboratory parameters. All lower extremity ultrasounds were normal at final visit.

Pharmacokinetics

Linear dose-dependent increases in peak and trough concentrations of RO5323441 were observed (Supplementary Table S1). The PK parameters of RO5323441 were estimated using a 2-compartment population PK model. The average effective half-life was 18.5 ± 8.0 days, and the mean apparent clearance was 0.19 ± 0.05 L/day. The mean estimated volume of distribution was 2.9 ± 0.6 L for the central compartment and 2.1 ± 1.5 L for the peripheral compartment. The mean area under the concentration-time curve over the dosing interval (AUC_{tau}) at steady state was 4884 ± 1142, 6075 ± 1019, and 12762 ± 3183 μg*day/mL for the 625, 1250, and 2500 mg dose levels, respectively. The linear dose-exposure relationship is shown in Supplementary Fig. S1). Bevacizumab serum exposures were similar across cohorts and were unaffected by the concomitant administration of RO5323441 (Supplementary Table S2).

Pharmacodynamics

Following initial treatment with single-agent bevacizumab (on day −14), DCE-MRI analysis revealed a large relative decrease from baseline (~60%) by day −2) in initial area under the gadolinium concentration curve normalized with plasma input function (AUC_{BN}). AUC_{BN} is a composite parameter that reflects flow, permeability, and vascular volume.23 This

Table 2. Adverse events of any grade reported by >10% of the study population and all G 3/4 events

<table>
<thead>
<tr>
<th>Event</th>
<th>Patients by Treatment Group and AE Grade (n [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>625 mg (N = 4)</td>
</tr>
<tr>
<td>AE leading to discontinuation</td>
<td>–</td>
</tr>
<tr>
<td>SAE</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Any grade AE in >10% patients</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Headache</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>–</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>–</td>
</tr>
<tr>
<td>Constipation</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Nausea</td>
<td>–</td>
</tr>
<tr>
<td>All G 3/4 events</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Headache</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>–</td>
</tr>
<tr>
<td>Confusion</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>–</td>
</tr>
<tr>
<td>Fatigue</td>
<td>–</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Device-related infection</td>
<td>–</td>
</tr>
<tr>
<td>Meningitis associated with spinal fluid leak</td>
<td>–</td>
</tr>
<tr>
<td>Sepsis</td>
<td>–</td>
</tr>
<tr>
<td>Tooth abscess</td>
<td>–</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>–</td>
</tr>
<tr>
<td>Brain edema</td>
<td>–</td>
</tr>
<tr>
<td>Cerebral infarction</td>
<td>–</td>
</tr>
<tr>
<td>Asthenia</td>
<td>–</td>
</tr>
<tr>
<td>Mucosal inflammation</td>
<td>–</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^a\)Indicates the 2 dose-limiting toxicities.
Abbreviations: AE, adverse event; G, grade; SAE, serious adverse event.
effect (observed in all evaluated lesions in all participants) was maintained for the duration of combination therapy (Fig. 1B and C). A further decrease (day 2 to day 1) occurred for 2 participants after RO5323441 dosing. All participants also showed a marked decrease (~70% overall) in DCE-MRI-derived fractional extracellular extravascular volume (ve; Fig. 1D). DW-MRI revealed an overall smaller decrease (~20%) in the water diffusion coefficient (ADC), and a reduction in ADC was observed in 4 of 6 participants (5/7 tumor lesions; Fig. 1E).

Baseline median plasma PlGF level (available for 21 participants) was 24.4 pg/mL (range, 14.1–31.3 pg/mL). In the expansion cohort, the median baseline PlGF level was 25.5 pg/mL (range, 20–31.3 pg/mL), which increased by ~40% after a single dose of bevacizumab. In all cohorts, there was no apparent association between baseline PlGF levels and clinical response. The combined effect of bevacizumab plus RO5323441 on PlGF levels could not be evaluated due to assay interference caused by RO5323441.

Increases in VEGFA were observed following the administration of both combination therapy (cohorts 1–3) and bevacizumab monotherapy (cohort 4; Fig. 2A). Following prolonged combination treatment, the levels of VEGFA appeared to increase to a greater extent with the highest tested dose of RO5323441 (cohorts 3 and 4). Although results were variable, decreased levels of FLT4 occurred following the administration of both treatments (Fig. 2B).

Efficacy

Of the 22 treated participants, one (4.5%) participant had a complete response, 4 (18.2%) had a partial response, 11 (50%) had stable disease, and 6 (27.2%) had progressive disease (Supplementary Table S3 and Fig. 3A). Two participants experienced prolonged durable responses of 16 and 17 months after treatment with 1250 mg and 625 mg RO5323441, respectively. One participant had no on-treatment response assessments and was therefore considered to have progressive disease. These findings translate into an ORR of 22.7% and a DCR of 72.7%. No dose-dependent effect was observed.

Median PFS was 3.5 months (95% CI, 2.6–4.3 months; Fig. 3B) and median OS was 8.5 months (95% CI, 7.3–9.9 months; Fig. 3C). PFS-6 was 22.7%, and the Kaplan-Meier estimate for 6-month OS was 81.8%.

Corticosteroid use decreased in 6 (38%) of 16 participants who received corticosteroids at baseline (median dose reduction −50%; range, −20% to −80%).

Discussion

RO5323441 in combination with bevacizumab had acceptable tolerability in participants with recurrent glioblastoma. Two DLTs occurred, which led to participant withdrawal; however, the MTD for the combination was not reached. The highest RO5323441 dose tested was 2500 mg. The safety profile of RO5323441 was similar across dose groups, and no participant died while on the study. Hypertension was also the most frequent treatment-related AE (64% of participants) but was well managed with medication and did not lead to study discontinuations. The reason for the higher frequency of hypertension compared with previous studies with single-agent RO5323441 (5%) or single-agent bevacizumab (30%–40%; 4%–11% G3/4) remains unclear. This may reflect the 30%–50% higher RO5323441 exposure seen in this study compared with that seen in patients with hepatocellular, ovarian, and colorectal cancer treated with equivalent RO5323441 doses as monotherapy/combination therapy (Roche, unpublished data). Conversely, bevacizumab exposure was not affected by coadministration with RO5323441. Dysphonia,
which is uncommon with single-agent bevacizumab\(^2^4\) and single-agent RO5323441,\(^1^8,\!^1^9\) occurred frequently with combination therapy and may indicate a synergistic toxicity; however, all events were grade 1/2.

Consistent with the known antiangiogenic effects of bevacizumab,\(^2^5\) VEGF inhibition was associated with a large decrease in DCE-MRI AUC\(_{BN}\). Further reductions in AUC\(_{BN}\) occurred in 2 participants following subsequent administration of RO5323441, which may indicate an additive antiangiogenic effect. The reductions in DW-MRI ADC and DCE-MRI \(v_e\) reported here are comparable to previous results with other antiangiogenic treatments.\(^1^5\) This suggests that the 2 agents may be capable of reducing vasogenic edema, a finding that has been previously reported with bevacizumab.\(^1^1,\!^2^6\) Bevacizumab therapy can also decrease (peri-)tumoral edema in participants with recurrent glioblastoma, thereby reducing the demand for corticosteroids.\(^2^7\) This is consistent with the reduction in dexamethasone dose seen in 38% of participants who were receiving steroids at baseline in the current study.

Increases in plasma PlGF levels occur in patients with glioblastoma treated with anti-VEGF therapies\(^1^5,\!^2^8\) and may represent an escape mechanism to antiangiogenic therapy.\(^2^9\) In this study, baseline plasma PlGF levels were comparable with previous results\(^1^5\) and increased moderately following bevacizumab administration. The influence of RO5323441 on PlGF levels could not be assessed due to interference of

![Fig. 3. Antitumor activity of RO5323441 and bevacizumab in glioblastoma patients. Waterfall plot showing maximum change in SLDs compared with baseline (A) and Kaplan-Meier curves of progression-free survival (B) and overall survival (C) for all patients. Figure 3A shows the data for 19 participants because 2 participants had no target lesions, and one had no post-treatment tumor assessments. Tick marks on Kaplan-Meier curves indicate censored data. Abbreviations: BOR, best overall response; CR, complete response; PD, progressive disease; PR, partial response; RANO, Revised Assessment in Neuro-Oncology; SD, stable disease; SLD, summed longest tumor diameter.](image-url)
RO5323441 with the assay. Across all cohorts, there was no apparent association between baseline PlGF levels and clinical response.

Bevacizumab therapy can increase levels of VEGF and decrease levels of VEGFRs.\(^1\) PlGF has been proposed to stimulate angiogenesis by displacing VEGF from the “VEGFR-1 sink,” thereby increasing the fraction of VEGFA available to activate VEGFR-2.\(^2\) Hence, neutralizing PlGF by escalating doses of RO5523441 should decrease VEGFA levels by allowing increased binding of VEGF to VEGFR-1. However, apparently greater increase in VEGFA levels was seen in participants treated at the highest dose of RO5323441 (Fig. 2A), suggesting a (over-) compensatory feedback mechanism of VEGFA expressing tumor cells. Moreover, increasing doses of RO5523441 may also reduce the formation of PlGF/VEGF heterodimers,\(^3\) which consequently increases VEGFA levels.

The ORR was 22.7% with no apparent differences between RO5323441 dose groups (no formal comparison of RO5323441 dose level and efficacy was conducted due to the low number of participants treated with the lower doses). Six-month PFS was 22.7%, and median OS was 8.5 months. These results are similar to previous findings with single-agent bevacizumab in recurrent glioblastoma,\(^10,11\) including the recent BELOB\(^34\) and CABARET\(^35\) studies (16%–24% PFS-6). While dual inhibition of VEGF and PlGF did not increase the ORR compared with previous studies of single-agent bevacizumab, 2 participants did experience durable responses of 16 and 17 months, respectively. The value of PlGF as a therapeutic target in cancer remains undetermined.\(^36,37\) Results with aflibercept, which binds both VEGFR and PlGF, have also been disappointing in patients with glioblastoma (PFS-6 was 7.7%), despite the encouraging activity of this agent in other cancers.\(^38\)

In summary, the safety and tolerability of multiple-dose RO5323441 and bevacizumab were acceptable and manageable, and the MTD for the combination therapy was not determined. While our study was not designed to test the efficacy of RO5323441, the data suggest that dual anti-VEGF and anti-PlGF inhibition with bevacizumab and RO5323441 in recurrent glioblastoma offers no therapeutic advantage over that which can be achieved with bevacizumab alone. The clinical development of RO5323441 has been terminated by the sponsor following an overall portfolio review.

Conflict of interest statement. O.C.: consultant for Roche, Magforce and Isarna; honoraria from GSK; research funding from Roche. O.C. declares ownership of a patent related to this field of study (PCT/IB2013/054275–MMP2 as a predictive biomarker of response to antiangiogenic therapy). P.R.: consultant for Roche, MSD, Molecular Partners. M.W.: consultant for Roche; honoraria from Roche MSD, Isarna; research funding from Roche, MSD, Isarna, Bayer, Merck Serono. U.L.: research funding from Roche. M.M-S: congress travel grant from Roche. C.M., V.L., and M.B: no conflicts of interest to declare. O.K., K.W., K.H., J.T., and A.L: employees of Roche. O.K. and K.H.: hold stock in Roche.

References

15. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor

