1

1.

Quantum-Inspired Analysis of Neural Network
Vulnerabilities: The Role of Conjugate Variables in
System Attacks: Supplementary Material

Jun-Jie Zhang!' Deyu Meng?*

Division of Computational physics and Intelligent modeling,
Northwest Institute of Nuclear Technology;,
Shaanxi, Xi’an 710024, China
E-mail: zjacob@mail.ustc.edu.cn
2School of Mathematics and Statistics,
Ministry of Education Key Lab of Intelligent Networks and Network Security
Xi’an Jiaotong University,

Shaanxi, P. R. China.

*To whom correspondence should be addressed; Email: dymeng@mail.xjtu.edu.cn

In this supplementary material, we provide the detailed definitions
and proofs of the uncertainty principle proposed in the main text.
Meanwhile, the numerical methods for estimating the high-dimensional

integrals of the parameters are also presented.

Uncertainty Relation of the neural networks

1 Uncertainty principle in quantum physics

In quantum physics, we can describe a particle by a wave packet (X) in the coordinate

representation with respect to the coordinate reference frame. The normalization condition

for (X)) is given by

[lweopax = 1)

where the square amplitude [1)(X)|* gives the probability density for finding a particle
at position X = (z,y,z). To measure the physical quantities of the particle, such as
position X and momentum P = (p,, py, p.), we need to define the position and momentum

operators z; and p; as:

E(X) = za(X),
P(X) = —iz—(X), (2)

where ¢ = 1,2, 3 denote the z,y, z components in the coordinate space, respectively. The

average position and momentum of the particle can be evaluated by

(&) = / 5 (X2 (X)dX

) = [V Oz, ®)

where (-) is the Dirac symbol widely used in physics and ¢*(X) is the complex conjugate
of ¥(X). The standard deviations of the position o,, and momentum o,, are defined

respectively as:

o, = (& — (&))",

oy = (B — (0:))"*. (4)

In the year of 1927, Heisenberg introduced the first formulation of the uncertainty
principle in his German article|?]. The Heisenberg’s uncertainty principle asserts a fundamental
limit to the accuracy for certain pairs. Such variable pairs are known as complementary

variables (or canonically conjugate variables). The formal inequality relating the standard

2

deviation of position o,, and the standard deviation of momentum o, reads

(5)

DN | —

02,0p;, =

Uncertainty relation Eq. states a fundamental property of quantum systems and
can be understood in terms of the Niels Bohr’s complementarity principle[?]. That is,
objects have certain pairs of complementary properties cannot be observed or measured

simultaneously.

1.2 Formulas and notations for neural networks

Without loss of generality, we can assume that the loss function [(f(X,6),Y") is square

integrableﬂ

/l(f(X,H),Y)%lX = f. (6)

Eq. @ allows us to further normalize the loss function as

I(f(X,0),Y)

wY(X) = ﬁ1/2 ’

so that

/ Yy (X)?dX = 1. (8)

For convenience, we refer 1y (X) as a neural packet in the later discussions. Note that
under different labels Y, a neural network will be with a set of neural packets.
An image X = (#1,...,%;,...,x)) with M pixels can be seen as a point in the multi-

dimensional space, where the numerical values of (21, ..., x;, ..., x)s) correspond to the pixel

In practical applications, it is rational to only consider the loss function in a limited range
I(f(X,0),Y) < C under a large constant C, since samples out of this range can be seen as outliers and
meaningless to the problem. The loss function can then be generally guaranteed to be square integrable
in this functional range.

values. The feature and attack operators of the neural packet 1y (X) can then be defined

as:

iti (X) = .I’il/)y (X)7
0

Py (X) = Gt (X) 0

Similar as Eq. , the average pixel value at z; associated with neural packet ¥y (X) can

be evaluated as

(&) = / 65 (X)by (X))dX. (10)

Since 1y (X) corresponds to a purely real number without imaginary part, the above

equation is equivalent to:

(&) = / by (X)zitby (X))dX. (11)

Besides, the attack operator p; = (‘% corresponds to the conjugate variable of z;. And

Ly

we can obtain the average value for p; as

) = [erl0z-vr(x)ax. (12)

1.3 Derivation of the uncertainty relation

The uncertainty principle of a trained neural network can then be deduced by the following

theorem:

The standard deviations o, and o, corresponding to the attack and feature

operators p; and z;, respectively, are restricted by the relation:

(13)

N | —

OpiOu; Z

We first introduce the standard deviations o, and o, corresponding to two general

operators A and B. Then it follows that:

(14)
In general, for any two unbounded real operators (a) and (b), the following relation holds
0 < {((a—ib)?) = (a%) —ilab — ba) + (b?).

(15)

If we further replace @ and b in Eq. by operators a(a?)~"/2 and b(b?)~1/2, we can

then obtain the property 2(a2)Y/2(b2)/2 > i(ab — ba), which gives the basic bound for the
commutator [d,b] = ab — ba,

s\l roy 1 1
(@)= = liz{[ao]l. (16)

Seeing the fact that [a, 13] = [121, B], we finally obtain the uncertainty relation

saon > Jig([A, B)I (17)

In terms of the neural networks, we can simply replace operators A and B by p; and

Z; introduced in Eq. @D, and this leads to
1 1
Op Oz, = |Z§<[ﬁ“i‘l]>’ = 57 (18)
where we have used the relation

[Di, 23]y (X) = [piti — Zipiltoy (X)

0
= g lma ()]

0
_xiT%wY(X)
= Yy (X). (19)

5

Note that for a trained neural network, ¢y (X) depends on the dataset and the
structure of the network. Eq. is a general result for general neural networks.

In the FGSM attack, the attacked image is of the form:

X = Xo+4e- sign(VxI(f(X,0),Y")|x=x,)
~Y Xo + € - VXl(f(Xa 9)) Y*)‘XZXD
= Xo+e- V[2y (Xo)]

= Xy + Py (Xy), (20)

where P = (6%1’ ey %, . %) and € = e - 8'/2. In the second line of Eq. 1} we have

used the property substantiated in [?]: "even without the "Sign’ of the FGSM, a successful

attack can also be achieved". From Eq. (20]), we can then obtain
Py (Xo) ~ efe - sign(VxI(F(X,0),Y")]x-x,), (21)

which is the reason that we call p; the attack operator.

2 Evaluation of Ax and Ap

2.1 Approximation of Az and Ap

In the equation referred to as Eq. , we encounter complex integrals involving o,, and
op,- These integrals are based on loss functions from trained neural networks and are
challenging due to their high dimensionality. Specifically, they are 784-dimensional for
the MNIST dataset and 3072-dimensional for the Cifar-10 dataset, which makes them
impractical to calculate directly.

To work around this complexity, we simplify these multidimensional problems to a

single dimension. Here’s how we do it using the MNIST dataset as an example:

We start by calculating the average value of all the input pixels, which we call Xjqqe.
Then, for a given trained classifier with a loss function, I(f(X,#),Y = 8)—where Y = 8
refers to the loss associated with the label number eight—we focus on one particular
dimension, 7, of the input X. We keep all other dimensions fixed at their base values,
Xpase- This reduces the loss function to depend on just one variable, x;.

As aresult, the complex equation (Eq. (6))) simplifies to the following one-dimensional

integral:

/l(f(X,@),Y:S)QdX:>/l(f(xi,e),Y 8)%dx; = Bi(Y = 8). (22)

This integral can now be solved using the direct Monte-Carlo integration method.
By repeating a similar process, we can calculate various quantities such as ¥y_g(x;),
(Zi(Y =8)), (pi(Y =38)), 0,,(Y =8), and 0, (Y = 8).

To get an overall estimate for label number eight, we randomly pick different ¢ dimensions

and then average them using the square-root of the sum:

AXs ~ (Zax =8))"/%, AP ~ (Zop =8))"/2, (23)

This approach provides only an approximate estimate of the original high-dimensional
integrals. While the results may not match the exact values, this estimation is useful
as long as we are interested in the comparative trend of AX and AP, rather than their

absolute values. Thus, this approximation is considered acceptable for our purposes.

2.2 Integral with Respect to Features and Pixels

In our research, we have employed three distinct neural network architectures. Upon

completion of their training, these networks are partitioned into two segments: the feature

7

extractors and the classifiers, as illustrated in Fig. [T}

(conv1): Conv2d(1, 16, kernel_size=(5, 5), stride=(3, 3), padding=(1, 1))

(conv2): Conv2d(18, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(conv3): Conv2d(64, 256, kernel_size=(3, 3), stride=(2, 2), padding={1, 1))

(fe1): Linear{in_features=2304, out_features=10, bias=True)

Conv for MNIST

convl): Conv2d(3, 32, kemnel_size=(3, 3), stride=(2, 2))
conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2))

convd): Conv2d(64, 128, kernel_size=(3, 3). stride=(2, 2))
convd): Conv2d{128, 256, kemnel_size=(3. 3), stride=(2, 2))
fc1): Linear(in_features=256, out_features=64. bias=True)

{
{
{
{
{
{

fc2): Linear(in_features=64, out_features=10, bias=True)

(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True) }
{conv2): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1. affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
(res1): Sequential(
(0): Sequential(,
(0 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True))
(1): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) BatchNerm2d(128, eps=1e-05, mementum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)))
{conv3): Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1. affine=True, track_running_stats=True)
(2): ReLU{inplace=True)
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False})

Conv for Cifar-10

Feature extractor: blue frame

Classifier: green frame

(convd): Sequential(
(0): Conv2d(256, 512, kernel_size=(3, 3). stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d{512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=2, stride=2. padding=0, dilation=1, ceil_mode=False})
(res2): Sequential(
(0): Sequential(
(0) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) BatchNorm2d(512, eps=1e-05, mementum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True))
(1): Sequential(,
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1}, padding=(1. 1))
(1) BatchNorm2d(512, eps=1e-05, mementum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)))
(classifier): Sequential(
(0): MaxPool2d{kernel_size=4, stride=4. padding=0, dilation=1, ceil_mode=False}
(1): Flatten(start_dim=1, end_dim=-1)
(2): Linear(in_features=512, out_features=10, bias=True))

Res for Cifar-10

Figure 1: The three network structures used.

The integration process outlined in Equation necessitates the use of an integrand

space. This space can consist of either the unprocessed images at the pixel level or the

attributes of the images that have undergone processing. Our study takes both scenarios

into account in order to compare how the uncertainty principle manifests at each of these

levels.

When performing the integration over pixel values, the loss functions associated with

the three neural networks serve as the integrands and are evaluated using the Monte Carlo

technique, effectively operating within the pixel space.

Alternatively, we initially process the images using the feature extractors, then we

retrain the classifiers with randomized weights to yield three refined classifiers. The loss
functions related to these classifiers are then incorporated into Equation to derive
the values of AX and AP. In this instance, the integration is carried out over the space

of extracted features.

References

[1] Heisenberg W. Uber den anschaulichen inhalt der quantentheoretischen kinematik

und mechanik. Zeitschrift fir Physik 1927; 43: 172-98.
[2] Bohr N. On the notions of causality and complementarity. Science 1950; 111: 51-4.

[3] Agarwal A, Singh R and Vatsa M. The role of ’sign’ and ’direction’ of gradient

on the performance of cnn Conference on Computer Vision and Pattern Recognition

Workshops, Seattle: USA, 14-19 June 2020.

	Uncertainty Relation of the neural networks
	Uncertainty principle in quantum physics
	Formulas and notations for neural networks
	Derivation of the uncertainty relation

	Evaluation of x and p
	Approximation of x and p
	Integral with Respect to Features and Pixels

