SHORT REPORT

Salivary acetylcholinesterase as a biomarker for organophosphate exposure

Vivian Ng, David Koh, Andrew Wee and Sin-Eng Chia

Background
Workers exposed to organophosphate (OP) pesticides are required to undergo periodic statutory medical surveillance in several countries. Measurement of cholinesterase (ChE) levels in blood is the conventional method of assessing the degree of occupational exposure to OP pesticides.

Two principal types of ChE measured in blood are erythrocyte acetylcholinesterase (AChE) and plasma or serum ChE. The latter is also named as ‘pseudo-’, ‘butyryl-’ and ‘non-specific’ ChE [1]. The determination of erythrocyte AChE is an indicator of acute intoxication with anticholinesterase pesticides [2]. However, the interpretation of ChE inhibition in either serum or erythrocytes is complex [3].

AChE catalytic activity has recently been shown to be detectable in saliva, where its catalytic activity is stable at room temperature for up to 6 h [4]. As collection of saliva is less invasive than collection of blood samples, such a procedure may be more readily acceptable for medical surveillance and biological monitoring of OP-exposed workers. There is, however, limited information available on the relationship between plasma, erythrocyte and salivary AChE levels.

In this study, we examined the relationship between serum erythrocyte and saliva AChE levels among healthy workers who were not exposed to OP pesticides.

Aim
To study the relationship between serum, erythrocyte and saliva acetylcholinesterase (AChE) levels and to explore the use of salivary AChE as a potential biomarker for OP exposure.

Methods
A cross-sectional study was conducted on 19 healthy adult male lead-exposed workers who were undergoing six monthly statutory medical examination. Passive drool saliva samples were collected from each worker. Each blood sample was tested for serum and erythrocyte AChE, and each saliva sample was tested for AChE.

Among the 19 subjects, the mean (± standard deviation) of salivary, erythrocyte and serum AChE/cholesterase were 22.7 (±17.4), 17171 (±1467), 8861 (±1876) U/l, respectively. There was a moderate correlation between salivary and erythrocyte AChE (r = 0.42, P = 0.071), but not salivary and serum AChE (r = −0.17, P = 0.48). The level of AChE in saliva was ~1820 times lower than AChE in erythrocytes.

Conclusion
It is probably not feasible to use saliva as a replacement for blood for the measurement of AChE levels. This is because of the much lower levels of AChE in saliva relative to erythrocytes, the weak correlation between the two measurements and the previously reported high intra-individual variation of salivary AChE.

Key words
Acetylcholinesterase; blood; organophosphate exposure; saliva.

Introduction
Workers exposed to organophosphate (OP) pesticides are required to undergo periodic statutory medical surveillance in several countries. Measurement of cholinesterase (ChE) levels in blood is the conventional method of assessing the degree of occupational exposure to OP pesticides.

Aim
To study the relationship between serum, erythrocyte and saliva acetylcholinesterase (AChE) levels and to explore the use of salivary AChE as a potential biomarker for OP exposure.

Methods
A cross-sectional study was conducted on 19 healthy adult male lead-exposed workers who were undergoing six monthly statutory medical examination. Passive drool saliva samples were collected from each worker. Each blood sample was tested for serum and erythrocyte AChE, and each saliva sample was tested for AChE.

Among the 19 subjects, the mean (±standard deviation) of salivary, erythrocyte and serum AChE/cholesterase were 22.7 (±17.4), 17171 (±1467), 8861 (±1876) U/l, respectively. There was a moderate correlation between salivary and erythrocyte AChE (r = 0.42, P = 0.071), but not salivary and serum AChE (r = −0.17, P = 0.48). The level of AChE in saliva was ~1820 times lower than AChE in erythrocytes.

Conclusion
It is probably not feasible to use saliva as a replacement for blood for the measurement of AChE levels. This is because of the much lower levels of AChE in saliva relative to erythrocytes, the weak correlation between the two measurements and the previously reported high intra-individual variation of salivary AChE.

Key words
Acetylcholinesterase; blood; organophosphate exposure; saliva.

Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Correspondence to: David Koh, Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597. Tel: +65 6516 4989; fax: +65 6779 1489; e-mail: cofkohd@nus.edu.sg

© The Author 2009. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
conical tube and ~2 ml of saliva was collected from each subject immediately before venepuncture.

Erythrocyte AChE was measured using the established calorimetric method described by Ellman et al. [5]. Serum AChE was analysed using the method of Ellman et al. with some modifications. Salivary AChE was determined using the Molecular Probes Amplex® Red Acetylcholine/ Acetylcholinesterase Assay kits (Invitrogen Ltd, Carlsbad, CA) with some modifications. All the samples were analysed on the same day within 6 h of collection.

Approval to conduct this study was obtained from the Institutional Review Board of the National University of Singapore. All workers were briefed about the study and provided written informed consent before participation.

Data were analysed using SPSS version 15. All P values are two sided and the level of statistical significance is 0.05.

Results

Nineteen healthy adult workers participated in the study. All of them were males, with a mean age [± standard deviation (SD)] of 35 ± 13 years. The duration of employment ranged from 3 months to 27 years. None of the workers had any significant current or past history of medical conditions.

The blood lead levels of the 19 workers were all <35.0 µg/dl (mean ± SD: 20.6 ± 8.15 µg/dl and ranged from 7.6 to 34.6 µg/dl).

Among the 19 subjects, the mean (±SD) of salivary and erythrocyte AChE were 22.7 (±17.4) U/l and 17171 (±1467) U/l, respectively. The mean (±SD) of serum ChE was 8861 (±1876) U/l. There was a moderate correlation between salivary and erythrocyte AChE ($r = 0.42$, $P = 0.071$), but not with serum ChE ($r = -0.17$, $P = 0.48$) (Figure 1). The level of AChE in saliva was ~1820 times lower than AChE in erythrocytes. There was no correlation between serum ChE and erythrocyte AChE ($r = 0.019$, $P = 0.94$) (Figure 2).

Discussion

In our study of 19 healthy adults, the range of salivary AChE was 1.1–62.5 U/l (mean = 22.7 ± 17.4 U/l), demonstrating that the AChE activity in saliva is low; ~1820 times lower than in erythrocytes.

Measurement of AChE in human saliva as an index of organophosphorus pesticide exposure has recently been explored in research [1,6]. Saliva as a diagnostic fluid has benefits such as ease and low cost of collection, the possibility of collecting multiple samples and of the lack of any need for a phlebotomist.

Based on the study findings of Ueda and Yamaguchi [7], AChE in human saliva is derived from salivary glandular cells, while pseudo ChE in whole saliva may be derived from microorganisms in the oral cavity. Our findings of correlation between salivary and erythrocyte AChE but limited correlation between salivary and serum ChE are in accordance with Ueda and Yamaguchi’s findings that no correlation was found between erythrocyte AChE and plasma AChE levels [7].

A recent study using radiometric assay for determination of the ChE activity in saliva in a group of healthy
adults suggested that salivary ChE may be a useful indicator of potential neurotoxic effects from exposure to organophosphorus and carbamate pesticides. The range of salivary total cholinesterase activity detected in that study was 0.051–4.5 U/l [6].

The relatively low level of AChE in saliva may well result in high variability in level detected with reference to the true level of activity present in blood.

The study findings of Claus Henn et al. indicated that the intra-individual coefficient of variance (CV) of saliva ChE was 35% [6]. Lefkowitz et al. [8] demonstrated that the mean intra-individual CV for red blood cell ChE in a group of 46 workers was ~3.9%. This indicates that a single measurement of erythrocyte ChE can be a reliable method for assessment of exposure to OP pesticides.

A recent report described a carbon nanotube-based electrochemical sensor method which appears to be a sensitive and quantitative tool for biomonitoring of salivary biomarkers of exposure to OP pesticides [9].

However, at present, it is probably not feasible to use saliva as a biological fluid to replace blood for the measurement of AChE levels, in view of (i) the much lower levels of AChE in saliva relative to erythrocytes, (ii) the weak correlation between the two measurements and (iii) the previously reported high intra-individual variation of salivary AChE.

Key points

- AChE activity in saliva is over a thousand times lower than that in erythrocytes.
- Salivary AChE does not correlate closely with either erythrocyte ($r = 0.42$) or serum ($r = -0.17$) AChE.
- It is therefore not feasible to use saliva as a replacement for blood for the measurement of AChE levels.

Funding

Niche Area Programme Funding (R-186-000-007-101) of the National University of Singapore.

Acknowledgements

We would like to thank all participants of the study.

Conflicts of interest

None declared.

References