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1 List of symbols

Table 1: List of symbols with explanation

E[·] Expectation value operator

i, j Indices running over all countries

m, nm Subscript indicating a member and non-member, respectively

TC Total costs, sum of damages and abatement costs

D Damages

C Abatement costs

d1, d2 Damage parameters

εi, E[ε] Country i’s uncertain and expected baseline emissions, respectively

σ , ρ Parameters characterizing uncertainty in baseline emissions: standard
deviation and coefficient of correlation between two distinct countries,
respectively

N Total number of countries

k,k∗, k̄∗ Size of the coalition: given at second stage, in equilibrium of the game,
in equilibrium of the game in the absence of uncertainty, respectively
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kq For all k ≥ kq the k-coalition implements quantities in equilibrium

ei Individual ex-post emissions

e, e∗(k) Level of global emissions and level at optimum for a k-sized coalition,
respectively

pi, p∗i Emission tax and optimal emission tax set by regulator, respectively

ēi, ē∗i Emission assignment and optimal emission assignment set by regulator,
respectively

ẽ∗k Optimal total emission allowances of a k-sized coalition in an emissions
trading regime

E[·]|ē∗/p∗/ẽk
Expected value under either instrument

∆, ∆k Difference in expected total costs when switching the instrument from
prices to quantities for: a single regulator; a coalition of size k, respec-
tively

`, `−i, `−k Number of: countries with prices; countries but i with prices; non-
members to coalition of size k with prices, respectively

`∞ Maximum number of countries with prices in the no-agreement equi-
librium (and exact number for N→ ∞)

`∗ Equilibrium number of countries implementing prices

Φ(k) Stability function: difference in expected total costs of a non-member
in the presence of a (k−1)-sized coalition and a member in presence of
a (k)-sized coalition

Φ̄(k) Stability function under certainty
dē j
dēm

, dē j
d pm

Derivative of emission policy level of non-members with respect to
emission policy levels of a member

d p j
dēm

, d p j
d pm

Derivative of emission tax level of non-members with respect to emis-
sion policy levels of a member
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2 Equivalence of costs of abatement in Eqs. (1) and
(2)

Starting from the expression for abatement costs taken directly from Weitzmann
1974, our Eq. (2):

CW(q,θ) = a(θ)+
(
C′+α(θ)

)
(q− q̂)+

C′′

2
(q− q̂)2, (1)

we aggregate the last two summands into one square and subtract the extra term(
C′+α(θ)

C′′

)2
:

CW(q,θ) = a(θ)+
C′′

2

(
C′+α(θ)

C′′
+q− q̂

)2

−
(

C′+α(θ)

C′′

)2

.

This equation can be expressed in terms of emissions by carrying out a change of
variable qi = εi− ei:

CW(q,θ)
qi=εi−ei→ CW(ei,θ)

=
C′′

2

(
C′+α(θ)

C′′
− q̂+ εi− ei

)2

+a(θ)−
(

C′+α(θ)

C′′

)2

.

This expression can be further simplified to

CW dropping constants→ C′′

2
(Ai(θ)− ei)

2

by dropping all constant terms from the abatement cost function, given that they
do not influence the relative ranking of instruments, neither the formation of coali-
tions. In addition, we aggregated terms by introducing Ai(θ) ≡ C′+α(θ)

C′′ − q̂+ εi.
In this expression the effect of having uncertainty on θ or on baseline emissions
εi is equivalent.
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3 Numerical algorithm and extended Table 1

This appendix first describes the algorithm used to compute the numerical equi-
libria shown in Table 1, and then provides an extended version of the table which
includes values for coalition members’ and global emissions.

Parameters d2 and ρ are sufficient to determine `∞, as by Eq. (20). The algorithm
proceeds by computing for each coalition size 0 < k ≤ N the stability function
of Eq. (21), by performing – according to the desired type of equilibrium – the
following steps:

1. Equilibrium of stage 3: Emissions of members and non-members are deter-
mined by the Eqs. in Footnote 7, which are independent of the outcome of
the second stage.

2. a. Equilibrium of stage 2, endogenous instrument choice: For k ≥ 2,
the expected total costs of the coalition for different emission poli-
cies are determined with Eqs. (12), (13) and (14). First, we assume
a price-based treaty, i.e. that all k members would do prices and
max(min(`∞−k,N−k),0) of the non-members optimally choose prices
as well, and compare the expected total costs of the coalition to the
case when the k members switch to quantities keeping the number of
non-members with a price-based policy at max(min(`∞−k,N−k),0).
Second, we compare the expected total costs of the coalition under the
quantity-treaty, i.e. when the k members do quantities and min(`∞,N−
k) non-members optimally choose prices, to the case when the coali-
tion would switch to prices and the non-members stick to their emis-
sion policies. If expected total costs of the coalition are lower with
quantities in both cases, a quantity-based treaty and min(`∞,N − k)

non-members with prices is the equilibrium of the second stage. If
expected total costs of the coalition are lower with a price-based treaty
in both cases, the second stage equilibrium consists of k members and
max(min(`∞− k,N− k),0) non-members with prices. In the numeri-
cal examples, we do not find cases of mixed-equilibria in instrument
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choices for the coalition. For k ∈ {0,1} we set the total number of
countries with a price-based policy equal to min(`∞,N).

b. Equilibrium of stage 2, restriction to a price-based treaty: We fix the
instrument of coalition members to prices and then set the number of
non-members with price-based policy to max(min(`∞− k,N− k),0).

c. Equilibrium of stage 2, tradable quantities: As in point a., but changing
the coalition’s abatement costs under a quantity agreement from Eq.
(12) to Eq. (22).

3. With the outcome of stage 2, we can compute the expected total costs of
members and non-members for any given coalition size k, using Eqs. (12),
(13) (respectively (22) for the case of tradable quantities) and (14). In those
cases where the instrument choice of non-members is not unique – because
stage 2 only determines the total number of countries with price-based pol-
icy – and for the case of k ∈ {0,1}, we calculate expected abatement costs
by assuming that each country expects to implement prices with the same
probability.

After these steps the expected total costs of members and non-members for each
possible k are known, allowing to determine straightforwardly the stability func-
tion in Eq. (21). As the very last step, we identify the size k∗ < N, for which
the stability function is non-negative for k∗ and negative for k∗+ 1. In case the
stability function is positive for k = N, the grand coalition comprising all coun-
tries is stable. This algorithm has so far only produced unique values k∗ for each
parameter set, justifying its identification as the stable equilibrium.

The following table replicates the results of Table 1 and in addition shows the
corresponding values found for the expected emissions of members and total ex-
pected emissions.
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