A MID-LIFE generation wedged between obligations to young children and elderly parents would seem to be an obvious consequence of improved survivorship at the older ages. Despite the intuitive appeal of this argument, both the nature and prevalence of competing generational claims in mid-life remain open questions several decades after the notion first surfaced (Uhlenberg, 1993). Elsewhere in this issue, Rosenthal, Martin-Matthews, and Matthews (1996) use Canadian survey data to contribute new estimates of how many middle-aged adults balance potential filial duties with competing social roles.

How common are three-generation families in which the dependencies of the youngest and oldest kin vie for the resources of the middle generation? At the most basic level this is a question of population structure, a fundamental concern of demographers. In the aggregate, the relative support burden on middle-aged persons (defined as broadly as 15–64 years of age or as narrowly as ages 45–49) is crudely measured by various dependency ratios. Estimates are regularly published for the total dependency ratio (the sum of “youth” and “elderly” support ratios) and, even recently, a “sandwich generation” ratio (U.S. Bureau of the Census, 1996). Because such calculations do not represent actual family linkages, these ratios represent per capita burden under the assumption that all middle-aged persons in a population contribute equal effort to support young and old, even those without children or living parents.

More realistic estimates of the generational structure of families can be derived from simulation models. Multi-state life table models, for example, allow demographers to estimate the number of person-years a cohort survives with both old parents and children given a regime of nuptuality, fertility, and mortality risks. Watkins, Menken, and Bongaard (1987) use such a macro-simulation model to show that the demographic conditions which prevailed in 1980 tipped the generational “seesaw” in favor of living longer with parents aged 65 and over than with children under age 18. On average, only five years were lived having both an older parent and a minor child, only slightly more than the overlap years under the 1900 schedule of rates. Micro-simulation models, such as SOCSIM described by Himmel, Wachter, and McDaniel (1981) and Wolf’s KINSIM (1988, 1994), generate even more refined representations of family trees in historical and projected time.

Until recently demographic methods were required to estimate the simple prevalence of three-generation families within the population. But with the advent of the 1986–87 National Survey of Families and Households (NSFH), and its 1992–94 follow-up, data identifying kin both within and outside the respondent’s household are available to describe the generational structure of mid-life families. Because family information is reported for spouses/partners if married, these data more fully describe the cross-pressures potentially buffeting mid-life families.

Figure 1 displays the distribution of family structures by age for a mid-life reference population using data from NSFH 2. At ages 50–54, for example, about 5 percent have parents or in-laws but no children and about one in five have children but no parents or parents-in-law. By far, the most common family structure at ages 50–54 is the family containing at least three generations. Nearly 74 percent in this age group have one or more living parents (or in-laws) and one or more children (or stepchildren). The prevalence of four-generation families (parents, children, grandchildren, and the mid-life reference generation) is shown with a dotted line to indicate that this type of family is a special case of families with three or more generations. The prevalence of the four-generation family crests at ages 50–54, about 10 years after the peak in the prevalence of families with at least three generations.

Unlike the Canadian data of Rosenthal, Martin-Matthews, and Matthews (1996), the estimates shown in Figure 1 summarize potential obligations to parents and in-laws and children and grandchildren. Several important features of contemporary family structure are obvious in these data. First, membership in a three-generation family containing older parents and children is modal for middle-aged adults up to age 60. Four-generation families also are fairly common for those in their forties and fifties. Second, with a mean age of childbearing hovering around 26 years since 1960, very little of the generational overlap occurs at a point when both the elderly parents and offspring of middle-aged adults are likely to need care. Rather, the timing of parent care is more likely to coincide with the launching of young adult children.
Third, at a point in the life cycle of middle-aged adult children when elderly parents or in-laws are at greatest risk for frailty (typically after age 75), the generation in the middle is more likely to be juggling care commitments to grandchildren than to their own very young children.

Structural data alone neither prove nor dispel the image of middle-aged adults caught in a web of generational obligations. Within the constraints of a given family structure, actual helping behaviors must be examined. But because the issue of mid-life family demands originally emerged in the literature on parental caregiving, often only actual hands-on assistance is considered in analyses of competing obligations to kin at various ages. While future research needs to integrate care involvement with grandchildren and in-laws, far more important may be models which account for all possible intergenerational exchanges. Locating kin obligations in such a matrix has important analytic advantages. The currencies of intergenerational exchanges include not only time (or services), but also money and space (co-residence). Contingent on service availability, financial transfers can substitute for labor-intensive care either for young children or for frail parents. Financial assistance can take many forms, including irregular but substantial transfers to help with medical bills, the down payment on a first home, college tuition, or living expenses during spells of unemployment or times of marital transition (after widowhood of a parent or divorce of a child). On occasion, payments may by-pass the older parent or offspring and go directly to the provider of services.

Rosenthal, Martin-Matthews, and Matthews (1996) and other researchers report a very low incidence of financial transfers to older parents. Indeed, elderly parents appear far more likely to give financial help to children and grandchildren than to receive it (Soldo and Hill, 1993). But the low prevalence of financial help for parents and reverse flows may mask competing family pressures on both the short- and long-term resources of middle-aged adults in extended families. Financial responsibility for college tuition may encourage work or sustain the commitment to work longer than would otherwise be the case. Alternatively, providing labor-intensive care for dependent parents or grandchildren may discourage work, especially for women. Under either scenario, intergenerational transfers have distinct implications for pension eligibility, saving, asset accumulation, and ultimately post-retirement incomes (Soldo and Hill, 1995). These broader aspects of competing generational claims on the resources of the middle-aged are often overlooked in models which fail to recognize that care obligations — whether to children, grandchildren, or parents — are endogenous with labor supply decisions (i.e., care and work decisions are jointly determined).

Locating parent care obligations in a broader array of intergenerational exchanges also calls attention to potential helper substitutions within the extended family. Most middle-aged children with elderly parents have one or more siblings with whom to share filial responsibilities (Wolf, 1994). Parents and most, if not all, children are likely to be involved in deciding how to assemble a care network. Analyzing the transfer behaviors and constraints of only one mid-life child in a family underestimates the flow of resources to an older parent and the sheer volume of competing demands on adult children. Neither can such analyses provide insights into the division of labor within a family or the distribution of burden across mid-life adults linked by blood or marriage.

Extensive data are required to fully account for competing claims on the financial and time resources of middle-aged adults and the correlation of their transfer behaviors with work. The new Health and Retirement Study (HRS), described by Juster and Suzman (1995), provides many of the needed data elements for a large representative sample of persons aged 51–61 in 1992. At a point when four-generational obligations peak, detailed family roster data are available on children, parents, and siblings for both spouses/partners in the case of couples. More importantly, each mention of an intergenerational transfer is linked to the specific relative who receives or provides the transfer. It is possible, for example, to describe a parent care system in terms of the hours and dollars contributed by each child, in the context of each one’s own competing family constraints and work behaviors (Soldo and Hill, 1995). Because family rosters and transfers are updated at each biennial interview, dynamic models of generational competition also are possible.

The image of middle-aged adults balancing parent care duties with child care duties is clearly an inappropriate rendering of mid-life. A fuller account of cross pressures at mid-life requires data and analyses which recognize alternative transfer currencies, siblings as potential substitute helpers, and obligations to both own kin and kin by marriage. Because there is a natural life-cycle rhythm to giving and receiving transfers, panel data are needed to evaluate how reciprocities (either bequests from parents or assistance later in life from own children) offset the sheer volume of claims on mid-life resources.

Acknowledgments

Data from the National Survey of Families and Households (NSFH) are available at http://elaine.ssc.wisc.edu/cde/nsfhtp.htm. Data from the Health and Retirement Study (HRS) may be downloaded from http://www.umich.edu/~hrswww/index.html. Both sites provide documentation and file descriptions.
Address correspondence to Dr. Beth J. Soldo, Department of Demography, Georgetown University, Box 571214, Washington, DC 20057-1214. E-mail: bsoldo@guvax.georgetown.edu

REFERENCES

