Personal and Neighborhood Resources, Future Time Perspective, and Social Relations in Middle and Older Adulthood

Tim D. Windsor, Katherine L. Fiori, and Dimity A. Crisp

1School of Psychology, Flinders University, Australia.
2Gordon F. Derner Institute of Advanced Psychological Studies, Adelphi University, Garden City, New York.
3Centre for Mental Health Research, Australian National University, Australia.

Objectives. Aging-related changes in motivation and the availability of resources have been hypothesized to result in social network changes in later life. However, few studies have examined associations of both motivation and resources with different aspects of social network composition in the same analytical context. The present study examined associations of key motivational (future time perspective [FTP]) and resource variables (partner status, physical health, and perceived neighborhood cohesion) with social network size and positive and negative social exchanges.

Method. A population-based sample of midlife (aged 55–59 years, n = 169) young–old (aged 60–74 years, n = 306) and old–old (aged 75+ years, n = 77) adults completed a questionnaire.

Results. Those who were partnered reported larger networks with family, whereas never-married individuals reported larger networks with neighbors. Perceived neighborhood cohesion was related to larger networks with family, neighbors, and friends. Open-ended FTP was associated with larger networks of friends and more frequent positive social exchanges.

Discussion. Our results point to FTP and resources having different implications for social engagement across network domains.

Key Words: Future time perspective—Negative exchanges—Positive exchanges—Resources—Social relations.

Supportive social relationships are central to health and well-being over the life span (Berkman, Glass, Brissette, & Seeman, 2000; S. Cohen & Janicki-Deverts, 2009). However, social relations are also subject to change with advancing age. The social networks of older adults are typically smaller than those of younger adults (e.g., Fung, Carstensen, & Lang, 2001), whereas older adults simultaneously report greater satisfaction with their social relationships (Carstensen, 1992) and fewer interpersonal tensions relative to their younger counterparts (Birditt, Fingerman, & Almeida, 2005).

Recent research concerned with aging-related changes in social network structure (e.g., network size, proximity, and contact frequency), function (e.g., the nature of support received), and quality (subjective evaluations of network quality, cf. Fiori, Smith, & Antonucci, 2007) has broadly taken two distinct though not mutually exclusive perspectives. Resource-based explanations focus on the extent to which aging-related losses, physiological decline, and changes in social roles result in a decrease in network size (e.g., Antonucci et al., 2001; Pinquart & Sorensen, 2001). In contrast, perspectives emphasizing life-span developmental changes in motivation emphasize the extent to which individuals play active roles in shaping their personal relationships into smaller more intimate networks while retaining high-levels of relationship quality (Carstensen, 2006).

The present study makes a unique contribution by examining both resources with key relevance to social engagement (partner status, physical health, and neighborhood cohesion) and motivational differences represented by subjective perceptions of time remaining or future time perspective (FTP) as predictors of social network characteristics. Thus, we aimed to provide new evidence as to whether resource availability or individual differences in FTP have more important implications for structure and/or quality of social relationships in later life. Our findings also provide a first step in determining whether resources and motivation are differentially related to network size across separate domains of family, neighbors, and friends and differentially related to the experience of both positive and negative social exchanges.

Age Differences in Motivation and Social Relations

Socioemotional selectivity theory (SST; Carstensen, 2006) outlines how changes in personal goals that occur with advancing age lead individuals to prefer smaller more intimate networks. According to SST, advancing age is accompanied by a greater salience of limits to future time. This results in changing goal hierarchies, with an emphasis on future-oriented goals that characterize younger adulthood (e.g., the acquisition of knowledge) replaced by...
a greater emphasis on emotion and meaning in the present. A primary means of achieving emotional goals is through the fostering of close relationships. This process is facilitated by the relinquishing of more peripheral social ties. Thus, older adults’ smaller social networks are accounted for by their greater preference for fewer more emotionally satisfying relationships. Support for SST has been provided by research comparing social preferences of younger and older adults (see Charles & Carstensen, 2009 for a review), studies based on manipulation of FTP (e.g., Cheng & Yim, 2008), and studies using self-report measures of FTP (Cate & John, 2007; Lang & Carstensen, 2002).

SST offers a theoretical perspective recognizing the role of personal agency in shaping social networks in later life that is supported by empirical research. However, a nuanced approach to age differences in social relations requires not just a focus on motivation but also recognition of the role of resources in enabling social behavior. The relevance of resources for network characteristics could be especially evident among the oldest old for whom the capacity to exercise personal agency may become increasingly limited (e.g., Baltes & Smith, 2003).

Age Differences in Resources and Social Relations

Resources constitute those things that are either valued in their own right (e.g., health) or that provide a means to obtain centrally valued outcomes (e.g., financial resources) and are recognized as playing a central role in resilience against stress and well-being (Hobfoll, 2002). Researchers have also acknowledged the particular relevance of resource availability to the maintenance of social networks in older adulthood (e.g., Fiori, Consedine, & Magai, 2008). In late life, physical limitations become more commonly experienced (e.g., Baltes & Smith, 2003), which could restrict social engagement. Widowhood also becomes more prevalent, with the loss of a spouse often representing loss of a confidant (e.g., Kendig, Coles, Pittelkow, & Wilson, 1988). As a result, studies concerned with resources and social network composition in older adulthood have tended to focus on the relevance of aging-related changes in health or functional status and marital status. For example, research concerned with social relations among visually impaired older adults has indicated that greater levels of functional disability are associated with lower perceived quality of support (Reinhardt & Blieszner, 2000). Similarly, longitudinal research indicates that increases in functional disability over time are associated with an increase in instrumental support from family but a decrease in emotional support from friends (Reinhardt, Boerner, & Benn, 2003).

Findings related to widowhood and social networks are mixed, with some studies reporting lower levels of social contact among widows relative to those who are married (Bennett, 2005; Glaser, Tomassini, Racciopi, & Stuchbury, 2006) and others showing greater social participation among widows (Donnelly & Hinterlong, 2010; Guiaux, Van Tilburg, & Broese Van Groenou, 2007; Utz, Carr, Nesse, & Wortman, 2002). Marital disruption through divorce or separation may negatively affect broader social engagement by promoting emotional and financial stress (Pudrovská, Schemien, & Carr, 2006; Waldron, Weiss, & Hughes, 1997) and increased negative social exchanges (Milardo, 1987). Those experiencing multiple resource restrictions (e.g., widowhood and poor health) might have particular difficulty in maintaining networks (Antonucci et al., 2001).

Recent research has also focused on the role of proximal neighborhood characteristics for enabling social engagement. Perceived access to neighborhood resources (services, facilities, organizations, etc.) has been positively associated with social participation among older adults (Richard, Gauvin, Gosselin, & Laforest, 2008). Similarly, having a positive perception of the neighborhood environment has been associated with higher levels of social support (Gray, 2009), whereas retiring to a safe neighborhood with good community facilities is identified by older adults as a defining characteristic of successful aging (Bowling & Dieppe, 2005). In the present study, we examined physical health, marital status, and perceived neighborhood cohesion as key resource-related predictors of social network size and quality. Given the possibility that multiple resource restrictions would be more strongly associated with network characteristics, we also tested interactions among partner status, health, and neighborhood cohesion.

The Present Study

Our aim was to establish whether resources and FTP were differentially related to (a) social network size across domains of family, neighbors, and friends and (b) positive and negative social exchanges among midlife and older adults. We expected that having a partner would be associated with larger family network size as partners may facilitate engagement with broader kin-based networks (Shapiro & Keyes, 2008). In contrast, we expected that those who did not have a partner would report larger networks with friends and neighbors, who are likely to be drawn upon as compensatory network members when close family are not available (e.g., Cantor, 1979). We expected physical health to be positively associated with network size. We also expected that having favorable perceptions of the neighborhood environment would be associated with larger networks. In keeping with SST, we expected that open-ended FTP would be associated with larger friend networks. We also predicted that more limited FTP would be related to more frequent positive and less frequent negative exchanges, given the importance of shifting time horizons for the reprioritization of social goals around maximizing positive emotional experience in close relationships (e.g., Carstensen, 2006).
mixed, with some studies reporting lower levels of social from friends (Reinhardt, Boerner, & Benn, 2003). Over time are associated with an increase in instrumental ability are associated with lower perceived quality of support. As a result, studies concerned with resources and social network characteristics could be especially that is supported by empirical research. However, a nuanced measures of FTP (Cate & John, 2007; Lang & Carstensen, 2008), and studies using self-report of younger and older adults (see Charles & Carstensen, 2008). In late life, physical limitations become more commonly experienced in close relationships (e.g., Carstensen, 2006). The scales comprise 24 items, which address details indicated that they lived in a retirement village (community-dwelling participants were our target, given the broader project aims), 1,973 individuals were mailed a questionnaire and letter inviting them to participate. A total of 561 participants returned the questionnaire (a response rate of 28.4%) with the sample consisting of 268 males and 284 females, with a mean age of 65.38 (SD = 8.29). On average, participants reported living in their current residence for 18.87 (SD = 13.43) years. Additional demographic characteristics of the sample are shown by age group in Table 1. Participants were predominantly female, partnered, had greater than 5 years of education, and were not in full-time employment. Ethics approval was obtained from the Australian National University Committee for Ethics in Human Research.

Measures

Network size.—Three items from the Lubben Social Network Scale (LSNS-18; Lubben & Gironda, 2003) were used to measure social network size across separate domains of family, friends, and neighbors. Each network domain was represented using a single item that referred to number of network members (family, neighbor, or friend) providing regular (at least monthly) contact. Participants responded on a 6-point scale from 0 (none) to 5 (nine or more).

Positive and negative social exchanges.—The quality of social exchanges was examined using positive and negative social exchange scales developed by Newsom, Rook, Nishishiba, Sorkin, & Mahan (2005). The scales comprise 24 items, with 12 items representing aspects of positive exchanges (informational support, instrumental support, emotional support, and companionship) and 12 items representing aspects of negative exchanges (unwanted advice or intrusion, failure to provide help, unsympathetic or insensitive behavior, and rejection or neglect). Participants were asked to consider the people in their lives (partner or spouse, family members, friends, neighbors, in-laws, or others) and indicate on a 5-point scale from 1 (never) to 5 (very often) how often various exchanges occurred over the past month. Total scores were obtained for positive and negative exchanges by calculating mean responses for each subscale, with total scores ranging from 0 to 12 and higher scores representing greater levels of positive (α = .94) or negative (α = .90) social exchanges.

Resources.—Partner status categories included married or partnered (0), separated/divorced (1), widowed (2), and never married (3). Self-rated physical health was assessed using the physical health component score (PHC) of the Rand-12 (Hays, 1998). Applying factor loadings based on
an analysis of U.S. population-based data produces scale scores with a mean of 50 and standard deviation of 10. Higher scores indicate better physical health (α = .85).

Perceived neighborhood cohesion was assessed using three items included in both the English Longitudinal Study of Ageing (ELSA; e.g., Stafford, McMunn, & De Vogli, 2011) and the Health and Retirement Study (HRS; Juster & Suzman, 1995). Items included “I really feel part of this area,” “Most people in this area can be trusted,” and “Most people in this area are friendly.” Responses are provided using a semantic-differential format, with rating scales ranging from 1 to 7. The three items (along with a fourth item not included in the HRS and not available in the current study) have previously been found to load on a common factor in ELSA (Stafford et al., 2011) and had good internal consistency in the present study (α = .73).

Future time perspective.—FTP was assessed using five items from a 10-item scale developed by Lang and Carstensen (2002) to assess FTP. The five selected items were those included as example items in Lang and Carstensen’s original published article (e.g., “many opportunities await me in the future,” “most of my life still lies ahead of me,” “my future seems infinite to me,” “I have the sense that time is running out” [reversed], “as I get older, I begin to experience that time is limited” [reversed]) and correspond with a short form of the scale used by Cate and John (2007). Responses were provided on a 7-point scale ranging from 1 (very untrue) to 7 (very true). A final score was produced by summing the items such that higher scores represented a more open-ended FTP (α = .77).

Sociodemographic characteristics and covariates.—Age was collapsed into three categories: midlife (aged 55–59 years), young–old (aged 60–74 years), and old–old (aged 75+ years) based on age cutoffs consistent with previous research (e.g., Baltes & Smith, 2003; Lachman, 2004). This enabled examination of possible nonlinearity in the association of age with social relationships. For example, the postretirement phase of young–old adulthood might represent increased opportunities for social engagement, whereas old–old adults could be more likely to experience restricted FTP and resource limitations. Analyses were conducted controlling for years of education (0 = fewer than 5 years secondary school and 1 = 5 or more years of secondary school) and employment status (0 = not employed full time and 1 = employed full time). Although both education and employment might be conceived of as resources (e.g., Hobfoll, 2002), we treated these variables as covariates in the current analysis due to equivocal findings in the literature regarding the association of education with social networks (e.g., Ajrouch, Blander, & Antonucci, 2005) and the likelihood that associations of employment with social networks will depend on the nature of the work environment (Nahum-Shani & Bamberger, 2009). We also controlled for sex (male = 0, female = 1) in light of previous findings that females tend to report larger more multifaceted social networks relative to males (e.g., Antonucci & Akiyama, 1987; Barker, Morrow, & Mitteness, 1998; Robb, Small, & Haley, 2008).

Missing Data
We excluded nine participants from the current analysis who had missing data on key demographic variables. For the remaining participants, the proportion of missing data for variables included in the analyses was less than 4%, with the exception of physical health (5.8% missing). In order to retain a consistent sample across the analyses and to reduce the potential for bias resulting from listwise deletion, missing data were imputed using maximum likelihood estimation via the SPSS EM algorithm (Schafer & Graham, 2002).

Statistical Analysis
Multiple regression analyses were used to examine the independent associations of age group, resources, and FTP with social network variables. Scale-level predictor variables (Rand-PHC and FTP) were mean centered, and cross product terms were used to test interactions among resource variables (cf. J. Cohen, Cohen, West, & Aiken, 2003). To facilitate comparability of associations across dependent variables, social network measures were standardized and converted to T scores (M = 50, SD = 10).

Results
Age Group, FTP, and Resources as Predictors of Network Size
Bivariate correlations reflecting unadjusted associations between the study variables are shown in Table 2. Results of the regression analyses used to examine adjusted associations of age group, FTP, and resources with social network size are shown in Table 3. For each analysis, Step 1 included age group and the covariates (education, employment status, and sex). FTP and resources (partner status, physical health, and neighborhood cohesion) were added at Step 2. Cross product terms used to test interactions among resources (Partner Status × Physical Health × Neighborhood Cohesion and all lower order two-way terms) were entered at Step 3, with nonsignificant terms progressively excluded to arrive at the final model.

Results indicated significant associations of age group with neighbor network size, with young–old and old–old adults reporting larger neighbor networks relative to midlife adults. Addition of personal resources and FTP at Step 2 of the models resulted in significant improvements to variance explained for each dependent variable of family, FΔ (6, 540) = 7.89, p < .001, neighbor, FΔ (6, 540) = 10.64, p < .001, and
friend, $F_A (6, 540) = 4.36, p < .001$, network size and also resulted in the association of old–old age with neighbor network size becoming nonsignificant. Consistent with predictions, being partnered was associated with larger family networks relative to those who were separated or divorced and those who never married, whereas the never married reported larger neighbor networks relative to those who were partnered. Perceived neighborhood cohesion was associated with larger networks of family, neighbors, and friends. As predicted, open-ended FTP was associated with larger friend networks.

Contrary to predictions, physical health was unrelated to network size in the main effects models (Step 2); however, a significant Health × Partner Status interaction emerged in the prediction of family network size, $F_A (3, 537) = 2.95, p = .03$. The nature of the interaction is displayed in Figure 1, which shows predicted values for family network size for hypothetical individuals with poor (−1 SD) and good (+1 SD) health in each of the partner status categories. The predicted values indicate that good health is associated with larger family networks among widows but not among those who are partnered.

Table 2. Bivariate Correlations Among Study Variables (N = 552)

<table>
<thead>
<tr>
<th>Variable</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.00</td>
<td>1.18***</td>
<td>0.91**</td>
<td>−0.19**</td>
<td>−0.38***</td>
<td>−0.32**</td>
<td>−0.24**</td>
<td>0.07</td>
<td>0.10***</td>
<td>−0.04</td>
<td>−0.08</td>
<td>−0.13***</td>
<td></td>
</tr>
<tr>
<td>Education (<5 years secondary)</td>
<td>1.00</td>
<td>0.18**</td>
<td>0.15**</td>
<td>0.03</td>
<td>0.04</td>
<td>0.13**</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11**</td>
<td>−0.02</td>
<td>−0.06</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td>Not partnered</td>
<td>1.00</td>
<td>0.09*</td>
<td>−0.10**</td>
<td>−0.17**</td>
<td>−0.23**</td>
<td>−0.11**</td>
<td>0.07</td>
<td>−0.11**</td>
<td>−0.02</td>
<td>−0.06</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed full time</td>
<td>1.00</td>
<td>0.00</td>
<td>−0.08</td>
<td>−0.06</td>
<td>−0.14**</td>
<td>−0.13**</td>
<td>−0.20**</td>
<td>0.01</td>
<td>0.00</td>
<td>−0.11**</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood cohesion</td>
<td>1.00</td>
<td>0.23***</td>
<td>0.14**</td>
<td>−0.04</td>
<td>−0.08</td>
<td>−0.07</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical health</td>
<td>1.00</td>
<td>0.26***</td>
<td>0.03</td>
<td>0.07</td>
<td>0.09*</td>
<td>0.08</td>
<td>−0.10**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td>1.00</td>
<td>0.08</td>
<td>0.10**</td>
<td>0.18**</td>
<td>0.20**</td>
<td>−0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family network size</td>
<td>1.00</td>
<td>0.22***</td>
<td>0.30**</td>
<td>0.19**</td>
<td>−0.19**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighbor network size</td>
<td>1.00</td>
<td>0.32**</td>
<td>0.14**</td>
<td>−0.13**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friend network size</td>
<td>1.00</td>
<td>0.26***</td>
<td>−0.15**</td>
<td></td>
</tr>
<tr>
<td>Positive exchanges</td>
<td></td>
<td>1.00</td>
<td>−0.06</td>
<td></td>
</tr>
<tr>
<td>Negative exchanges</td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Physical health assessed using the Rand-12 physical health component score. FTP = future time perspective.

*p < .01; *p < .05.

Table 3. Summary of Regression Analysis: Predictors of Family, Neighbor, and Friend Network Size (N = 552)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>48.52</td>
<td>49.10</td>
<td>49.13</td>
<td>48.18</td>
<td>47.07</td>
<td>49.35</td>
<td>48.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age groupa</td>
<td></td>
</tr>
<tr>
<td>Young–old (60–74 years)</td>
<td>0.55</td>
<td>0.03</td>
<td>0.45</td>
<td>0.02</td>
<td>0.46</td>
<td>0.02</td>
<td>4.44***</td>
<td>0.22</td>
<td>4.23***</td>
<td>0.21</td>
<td>1.16</td>
<td>0.06</td>
</tr>
<tr>
<td>Old–old (75+ years)</td>
<td>1.51</td>
<td>0.05</td>
<td>1.39</td>
<td>0.05</td>
<td>1.54</td>
<td>0.05</td>
<td>3.41*</td>
<td>0.12</td>
<td>2.63</td>
<td>0.09</td>
<td>−2.32</td>
<td>−0.05</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>1.32</td>
<td>0.07</td>
<td>1.61</td>
<td>0.08</td>
<td>1.63</td>
<td>0.08</td>
<td>0.08</td>
<td>0.00</td>
<td>−0.44</td>
<td>−0.02</td>
<td>2.16*</td>
<td>0.11</td>
</tr>
<tr>
<td>Education (<5 years secondary)</td>
<td>0.98</td>
<td>0.05</td>
<td>1.54</td>
<td>0.07</td>
<td>1.34</td>
<td>0.06</td>
<td>−2.95**</td>
<td>−1.4</td>
<td>−1.40</td>
<td>−0.07</td>
<td>−0.80</td>
<td>−0.04</td>
</tr>
<tr>
<td>Employed full time</td>
<td>−0.27</td>
<td>−0.01</td>
<td>−0.19</td>
<td>−0.01</td>
<td>−0.07</td>
<td>−0.00</td>
<td>−0.25</td>
<td>−0.01</td>
<td>−0.11</td>
<td>−0.04</td>
<td>−1.80</td>
<td>−0.07</td>
</tr>
<tr>
<td>Partner statusb</td>
<td></td>
</tr>
<tr>
<td>Separated/divorced (1)</td>
<td>−5.27***</td>
<td>−1.8</td>
<td>−5.28***</td>
<td>−1.8</td>
<td>0.39</td>
<td>0.01</td>
<td>−0.04</td>
<td>−0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widowed (2)</td>
<td>−1.92</td>
<td>−0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>−0.60</td>
<td>−0.01</td>
<td>−0.03</td>
<td>−0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never married (3)</td>
<td>−9.28***</td>
<td>−1.75**</td>
<td>−1.19</td>
<td>6.66**</td>
<td>0.13</td>
<td>2.09</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood cohesion</td>
<td>0.75*</td>
<td>−0.09</td>
<td>0.74*</td>
<td>0.08</td>
<td>2.57***</td>
<td>0.29</td>
<td>0.92*</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical health</td>
<td>−0.03</td>
<td>−0.03</td>
<td>−0.05</td>
<td>−0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td>0.10</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.21**</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health × partner status</td>
<td></td>
</tr>
<tr>
<td>Physical Health × (1)</td>
<td>−0.03</td>
<td>−0.03</td>
<td>−0.05</td>
<td>−0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Health × (2)</td>
<td>0.30*</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Physical Health × (3)</td>
<td>−0.32</td>
<td>−0.07</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.01</td>
<td>0.09</td>
<td>0.11</td>
<td>0.05</td>
<td>0.15</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>0.05</td>
<td>0.14</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Physical health assessed using the Rand-12 physical health component score. FTP = future time perspective.

*aReference category is midlife (55–59 years).

*bReference category is partnered.

*p < .05; **p < .01; ***p < .001.
Age Group, FTP, and Resources as Predictors of Positive and Negative Social Exchanges

Results of the analyses used to examine associations of age group, FTP, and resources with positive social exchanges are shown in Table 4. Only sex was a significant predictor of positive exchanges at Step 1, with females reporting more frequent positive exchanges relative to males. Inclusion of FTP and resources at Step 2 resulted in significantly improved model fit, \(F_{\Delta} (6, 540) = 4.56, p < .001 \). Of the resource variables, a significant association emerged for partner status, with those who were separated or divorced and those who were widowed reporting less frequent positive exchanges relative to those who were partnered. Results did not support our prediction that limited FTP would be associated with more frequent positive exchanges. In fact, contrary to expectations, open-ended FTP was associated with more frequent positive exchanges.

Associations of age group, FTP, and resources with negative social exchanges are also shown in Table 4. Results indicated that old–old adults reported less frequent negative exchanges relative to midlife adults. Addition of the Step 2 predictors contributed significantly to variance explained, \(F_{\Delta} (6, 540) = 11.90, p < .001 \). Contrary to expectations, FTP was not associated with negative exchanges. Of the resource variables, perceived neighborhood cohesion and better health were associated with less frequent negative exchanges. Results indicated that inclusion of the resource variables and FTP at Step 2 resulted in the association of old–old age with negative exchanges becoming nonsignificant. Post hoc analyses revealed that the reduction in the effect was primarily due to adjustment for neighborhood cohesion, which was higher among the old–old, and related to less frequent negative exchanges.

Discussion

Our examination provided an opportunity to better understand how age, resource availability, and motivation are each related to different domains of social network composition and quality in later life. Findings pertaining to each of the social network outcomes are discussed in the subsequent sections.

Network Size

Our results supported predictions that having a partner would be associated with larger family networks, whereas

Table 4. Summary of Regression Analysis: Predictors of Positive and Negative Social Exchanges (\(N=552\))

<table>
<thead>
<tr>
<th></th>
<th>Positive social exchanges</th>
<th>Negative social exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td></td>
<td>(B) (\beta)</td>
<td>(B) (\beta)</td>
</tr>
<tr>
<td>Constant</td>
<td>48.79</td>
<td>48.52</td>
</tr>
<tr>
<td>Age group(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young–old (60–74 years)</td>
<td>0.04 .00</td>
<td>0.38 .02</td>
</tr>
<tr>
<td>Old–old (75+ years)</td>
<td>−1.74 −.06</td>
<td>−0.25 −.01</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>3.94*** .20</td>
<td>4.17*** .21</td>
</tr>
<tr>
<td>Education (<5 years secondary)</td>
<td>−1.80 −.09</td>
<td>−1.08 −.05</td>
</tr>
<tr>
<td>Employed full time</td>
<td>0.25 .01</td>
<td>−0.10 −.00</td>
</tr>
<tr>
<td>Partner status(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separated/divorced (1)</td>
<td>−2.65(*)</td>
<td>−.09</td>
</tr>
<tr>
<td>Widowed (2)</td>
<td>−3.20(*)</td>
<td>−.09</td>
</tr>
<tr>
<td>Never married (3)</td>
<td>−0.88 −.02</td>
<td>−0.93 −.02</td>
</tr>
<tr>
<td>Neighborhood cohesion</td>
<td>0.45 .05</td>
<td></td>
</tr>
<tr>
<td>Physical health</td>
<td>0.21** .14</td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>.05 .09</td>
<td></td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>.04 .07</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Physical health assessed using the Rand-12 physical health component score. FTP = future time perspective.

\(^a\)Reference category is midlife (55–59 years).

\(^b\)Reference category is partnered.

\(*p < .05; **p < .01; ***p < .001\.)
those who were separated, divorced, or never married would report smaller family networks. Our finding that never married individuals reported larger networks with neighbors is in keeping with the hierarchical compensatory model of support (Cantor, 1979), suggesting that neighborhood networks represent a source of support for those without spouses and children. Older age was associated with larger neighbor networks; however, the difference between old and midlife adults was no longer significant after adjustment for resources and FTP.

Contrary to predictions, poor health was not related to smaller networks; however, health did moderate the association between partner status and family networks, with those who were widowed and in poor health reporting smaller networks relative to those who were widowed and in good health. Social participation has been identified as a positive active coping strategy for dealing with the adverse effects of widowhood (Donnelly & Hinterlong, 2010; Guiaux et al., 2007; Utz et al., 2002); our findings suggest that maintaining networks after loss of a spouse might in part be dependent on having adequate health resources. Not surprisingly, perceived neighborhood cohesion was related to larger neighbor networks; however, we also found larger friend networks and larger family networks among those with higher neighborhood cohesion. These findings are in keeping with previous research identifying the importance of a safe harmonious proximal social environment for facilitating broader social participation (e.g., Richard et al., 2008). Consistent with SST (e.g., Fung, Lai, & Ng, 2001), our findings indicated that perceived limits to future time were related to smaller friend networks.

Positive Social Exchanges

Contrary to our predictions, open-ended FTP was associated with more frequent positive exchanges. Our unexpected findings could indicate that other individual difference characteristics that share variance with FTP contribute to aging-related changes in social relationships to a greater degree than has previously been recognized. For example, FTP as measured in the present study may reflect dispositional tendencies toward positivity that are also captured in personality constructs, such as extraversion (e.g., Caspi, Roberts, & Shiner, 2005) and optimism (Scheier & Carver, 1992). Indeed, unexpected findings obtained using the FTP measure of Lang and Carstensen (2002) recently prompted Kessler and Staudinger (2009) to suggest that the items may capture optimism in addition to FTP. Tendencies toward positivity that may also be reflected in open-ended FTP may make individuals more appealing to others, resulting in more frequent positive social exchanges.

Our results also revealed less frequent positive exchanges among those who were widowed and among those who were separated or divorced relative to those who were married. The latter finding is in keeping with previous research (e.g., Milardo, 1987), and the results point to the centrality of the spousal relationship as a context for social support and positive emotional experience for many older adults (Hoppmann & Gerstorf, 2009).

Negative Social Exchanges

Our results indicated that old–old adults experienced fewer negative social exchanges relative to midlife adults. This finding is in keeping with research that highlights an aging-related increase in preferences for avoiding interpersonal conflict (Birditt & Fingerman, 2005). Greater perceived neighborhood cohesion was also associated with fewer negative exchanges, providing empirical support for the importance of positive neighborhood characteristics for facilitating late-life well-being (Bowling & Dieppe, 2005).

Contrary to predictions, FTP was not significantly associated with negative exchanges. Our findings suggest that there are important mechanisms other than motivational changes around FTP that contribute to the less frequent negative social exchanges reported by old–old adults. Research has shown that there are age differences in memories and behavioral preferences in reaction to interpersonal conflicts (e.g., Blanchard-Fields, 1999) and that older adults tend to recall fewer negative stimuli in comparison with younger adults (Carstensen & Mikels, 2005). It may be that this “positivity effect,” along with improved emotion regulation (Charles & Carstensen, 2009), represents more general developmental changes rather than phenomena due specifically to changes in FTP. The less frequent negative exchanges reported by old–old adults might also reflect tendencies among younger and older adults alike to avoid confrontation when interacting with older adults (Fingerman, Miller, & Charles, 2008).

Limitations, Practical Implications, and Conclusions

Our findings should be interpreted in the context of a number of limitations. Concerns regarding measurement of FTP have been raised here and elsewhere (Kessler & Staudinger, 2009), and our cross-sectional study design means that it is not possible to determine the direction of possible causal relationships among resources, FTP, and social network characteristics. Although a strength of our study was the inclusion of structural network measures across multiple domains in addition to measures of positive and negative exchanges, our measures of network size were based on single items, and use of more comprehensive network measures may have reduced error. Our measures of positive and negative exchanges did not allow us to distinguish quality of exchanges across different social domains (i.e., family, friends, neighbors). Future studies may benefit from the development and use of domain specific measures of relationship quality as more discretionary network members who are a source of negative exchanges (e.g., friends or neighbors) might be more readily excluded from networks.
than family. Finally, our analysis of resources was restricted to those that were of central theoretical relevance and included in previous research (e.g., Antonucci et al., 2001). The relatively small effect sizes evident in our study suggest that there may be additional resources and psychosocial characteristics with implications for social networks that might be considered in future research.

Notwithstanding these limitations, the present study represents an important first empirical step in integrating motivational and resource-focused perspectives on aging-related changes in social network characteristics. Taken together, our findings provide empirical support for both motivational and resource-based perspectives on age differences in social relations. More specifically, our assessment of predictors of network size across the different domains of family, friends, and neighbor networks demonstrated that different resource profiles and FTP are likely to have different implications for interpersonal relations depending on context. Although resource availability (e.g., being partnered) could be an important enabling factor for maintaining kin-based relationships, FTP appears to be more relevant to social behavior concerned with maintaining more discretionary relationships, including friendships.

The results of this study have important practical implications. Our findings point to the potential effectiveness of interventions aimed at improving neighborhood cohesion and promoting neighbors as network members, in particular for never-married individuals. In fact, research indicates that the most effective interventions for reducing social isolation among older adults are those that build on existing community resources and capacity (Findlay, 2003), and neighborhood involvement may be one key way in which “at-risk” older adults who may otherwise go unnoticed can be identified. Furthermore, our results imply that recently widowed individuals in particular might benefit from interventions aimed at improving or maintaining good health, thereby enabling out-of-home network engagement. In sum, intervention effectiveness studies as well as social gerontology more generally will benefit from continued theoretical and empirical efforts concerned with more clearly delineating the motivational, resource-related, and personality processes that influence social network changes into late life.

Funding

This research was supported under the Australian Research Council’s Linkage Projects funding scheme (project number LP0989584) in partnership with National Seniors Australia and the Illawarra Retirement Trust.

Acknowledgments

The findings and views reported are those of the authors and not necessarily those of the supporting agencies. T. D. Windsor is the recipient of an Australian Research Council Future Fellowship (#FT100100228). We wish to thank Kaarin Anstey, Peter Butterworth, Hal Kendig, and Pamela Pilkington for their contribution to the research.

Correspondence

Correspondence should be addressed to Tim D. Windsor, PhD, School of Psychology, Faculty of Social and Behavioral Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5043, Australia. E-mail: tim.windsor@flinders.edu.au.

References

Correspondence with National Seniors Australia and the Illawarra Retirement Trust.

Funding

Motivational, resource-related, and personality processes in intervention effectiveness studies as well as social gerontology research have examined ways in which older adults who may otherwise go unnoticed can be identified and included in social networks. Our findings point to the potential effectiveness of various interventions to reduce social isolation amongst older people: Where is the evidence? Ageing & Society, 23, 647–658. doi:10.1017/S0144686X03001296

