Web Appendix (not for publication)

Online Appendix B. The Model

Setup

We consider a country consisting of two regions, which we call coast (¢ ) and interior (i) for
exposition. Workers in each region potentially produce food (/') with decreasing returns and a
manufactured good (m ) with external economies of scale subject to congestion. In both sectors,
workers are paid their average product. We assume that (in the “long run”) workers are free to
move between regions and among sectors such that utility is equalized. The economy is closed

to the outside world.

For either region 7 € {c, i}, in the food sector average product is AfLJZf' and total production is

AfL}r'B , where 4, > 0 reflects productivity and Ly, is the amount of labor in the food sector in
the region. Food sector productivity is the same across regions. Decreasing marginal
productivity of labor in agriculture, due to a fixed supply of land, is reflected in the parameter

1 > B > 0. The urban sector produces the manufactured good. Average product per unit of labor
in the urban sector is A,,(v + L,,.) , where the v allows nonzero output by the marginal worker
as Ly, — 0, and € > 0 represents agglomeration economies increasing productivity in the
presence of more workers. Each worker is endowed with one unit of time, to be used for labor
and commuting in the city as in standard urban models (see Duranton and Puga, 2004, for a

review), so labor supplied per worker is 1 —¢L,,,. , where 0 < ¢ << I represents unit-distance

commuting costs in the city.! Average product per worker in the city is thus

! Following Duranton and Puga (2004), each worker is endowed with 1 unit of time, and lives on a lot of fixed size
1, with zero opportunity cost, in a two sided linear city. Working time is /-4fu where u is distance from the city
center and 4 unit commuting costs. Given a wage rate w, income after commuting is w(7-4tu). Residents pay rents
that differ by distance from the city center, and rental income is redistributed as an (equal) dividend to all city
residents. Since the lots have zero opportunity costs, rent at the city edge (u,,,,=L/2) is zero. Net income of the
person at the city edge before rent income transfers is w(l-4tu,,,) = w(l-2tL) and that equals net income of any
other person w(1-4tu)-R(u), where R(u) is rent at location u. Thus R(u) = 4tw(L/2-u), so integrating across the whole
city, total rents are rwL?, and rents remitted per worker are twL. Thus, total (labor plus rental dividend) income per
person in the city net of rent and commuting time is W=w(1-tL) and total income is w(I-tL)L. This corresponds to
effective labor supply in the city being L(7-tL).



Amr(v+ Ly, )(1 = tLyy) . The size of the manufacturing labor force that maximizes this is a
solution to stn_rl -(1+ S)ZL,SW -vt =0.Aslongas € <1, any Ly, fulfilling this expression
will be a unique maximum, but further restrictions on the parameter space are required to

guarantee the existence of an interior maximum.

Food, which is traded costlessly between regions as in standard new economic geography
models, is the numeraire good. Preferences are such that each worker consumes a fixed amount
of food A, and spends the remainder of her value of net average product on the manufactured
good. Welfare for any person in region r is then equivalent to consumption of the manufactured
good, (W, —N)/p,,., where W, is net wage income and p,,, is the price of the manufactured

good in region 7.

A fixed national population of workers L is free to move between sectors and regions, so that
L,=L,+Ly, 7r=ci (Bla)

L=L,+L, (B1b)

Real income equalization across sectors within each region (assuming both sectors exist in the
region) implies:

AL = P AV + L)1 = thy) | 7 = ¢, i (B2)
Free migration equalizes per person welfare (i.e. manufacturing consumption), across regions

so that:
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(B3)

The model is closed by imposing equilibrium in goods markets. How that is done depends on
whether there is inter-regional trade or not and whether regions absolutely specialize or not.

There are three different types of closure relating to three types of equilibria.

Autarkic equilibrium

If there is no trade between regions, clearing of the manufacturing good market in each region



requires total regional demand equals regional supply, or:

Li(AL;P =) = Py (v + Ly (L = thine) L (B4a)

or alternatively, using the agricultural market
M= AL (B4b)

Apmes B, €, A, 8, v, the eight equations implied in (B1)-(B3) and (B4b) specify

Given L,Af,Aml.,
equilibrium in the distribution of labor and the price of the manufactured good wherever it is

produced (me, Lm,-, Lfca Lﬁ., LcsLi’ PmesPri )'2

Trade equilibrium with both regions producing manufactures

If transport costs are sufficiently low, both regions can trade and produce manufactures if they
have differential comparative advantage. If they are identical and have sufficient manufacturing
scale beyond the point where average product is maximized, then there will be no trade. We
generally designate one region to be slightly better at manufacturing, in order to allow trade
equilibria when trade costs are sufficiently low. We maintain the assumption that food can move
costlessly between regions, and further assume that there is an iceberg cost t that applies to
movement of the manufactured good between regions. Trade will occur when the autarky price

ratio of manufactured goods is outside the range (1 -1, ﬁ). When there is trade, and no

absolute specialization in either region, the within-region goods market clearing conditions (B4a)
and (B4b) are replaced by an inter-regional goods market clearing condition and an arbitrage
condition. We specify food market equilibrium and leave the manufactured good as a residual:

M= AL+ AL (B5)

Assigning manufacturing comparative advantage to the coastal region, in practice it will always
be the manufacturing exporter in this class of equilibria, although we check for equilibria where
the interior is exporting manufactures as well. The prices of the manufactured good in the two

regions are related by an arbitrage condition:

2 To see that these represent eight equations, note that (Bla), (B2) and (B4b) each must be fulfilled for each region.
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Pumi :lymc(1 - T)_1 ) (B6)

for t the trade cost. Given L,Af,A Apes By €, A, 8,1, v, the eight equations embedded in

mi?’

(B1)-(B3), (B5) and (B6) specify an equilibrium in the distribution of labor and the price of the

manufactured good in the two regions.

Specialization equilibrium

Finally, there are equilibria where all manufactured goods are produced in one region, Since that
one region can be either the coast or the interior, we consider the two corresponding types of
specialized equilibria in the solution mechanism below. It can be defined by slightly adjusting
the trade equilibria without specialization above, setting manufacturing employment in one

region to zero and removing equation (B2) for that region.

Solving the model

For any given set of parameters, we solve the model as follows. We have 3 types of possible
equilibria: autarkic, trade without absolute specialization, and trade with absolute specialization,
with each of the last two available in two variants, one for each region exporting manufactures.
We pick an allocation of population to the interior region (with the coastal population being the
remainder of national population) and suspend equation (B3) (equalizing welfare across regions).
We then use the remaining equations in each type of equilibria to solve for all remaining
variables. From these we calculate the consumption per worker in each region (the LHS and
RHS to (B3)). Then, for each equilibrium type, we plot these two regional consumptions as a

function of (say) interior population. Their intersections are equilibria.

We limit attention to stable equilibria, subject to two stability conditions. Type 1 stability is with
respect to small changes in the population allocation across regions, assuming within-region
labor markets and all goods markets always clear (“instantly”). Equilibria are stable as long as
per-person manufacturing consumption in the interior (coast) is a declining (increasing) function
of L. (i.e., there are overall diseconomies to regional size). Type 2 stability is with respect to

perturbations within regions, focused in particular on adding a small number of workers to a



non-existent or small manufacturing sector within a region. For example, we perturb a small
number of workers out of food production in, say, the interior region and move them into
manufacturing in the interior. We keep regional populations fixed, but allow intra- and
inter-regional goods markets and coastal labor markets to clear (“instantly”). Equilibria are
unstable if interior manufacturing workers then have higher consumption than interior food
workers. They are stable if the reverse is the case. This condition implicitly assumes slower than
instant adjustment in inter-regional labor markets. We note however that in practice in all
examples we solved, in this type of experiment, under stability, interior food workers have the
highest welfare (manufacturing consumption) of workers anywhere and interior manufacturing

workers the lowest; and vice versa under instability.

Details of the solution method as applied to the examples below are given below. In general, for
any 1 there will either be an autarky or non-specialization equilibrium but not both, with higher
T having autarky. There may or may not be specialization equilibrium in one or both regions,

with the likelihood of stable specialization equilibria enhanced as t falls.

Analysis of possible equilibria

As with many similar models, there is no closed form solution. We illustrate the relevant
properties with several examples. Our baseline parameter set is

{L =10,000,000; v= 0.5; €=0.08;7="7x10"%;p=0.25; 1 = 0.018;4,=1;4,,=1; Ame = 1.01}.
With these parameters, average manufacturing product peaks at a city population of about
969,100. Note the regions are not precisely symmetrical, so that if trade is feasible, it will occur
because the coast has a slight comparative advantage in manufacturing production (with a higher
A,,). We consider all the specialization and non-specialization equilibria that exist and are stable
for values of transport costs, T, from 0.99 to 0.01. There are two types of specialization
equilibria: the coast producing only food and the interior producing only food.
Non-specialization implies autarky at high 1 ; while at lower t, when stable non-specialized

equilibria exist, they are trade equilibria.



Our focus is on how these patterns change in the transition from low (Af = 1) to high (Af =1.5)
agricultural productivity. When Afis low, at least with non-specialized manufacturing, there is

insufficient manufacturing employment to support a city populous enough to exploit scale

economies in any one region. When Afis high, much less labor is needed to produce the required

food, so there is a lot more manufacturing employment to allocate between the two regions.

Figure B1 shows the stable specialization and non-specialization equilibria when 4, = 1 for

different costs of trade, T, as graphed against the population of the interior region. The two outer
prongs correspond to the two sets of specialization equilibria: one where the interior produces
only food and one where the coast does that. When do these specialization equilibria exist and
when are they stable? They are (type 2) unstable when trade costs are high (1t > 0.4). In that
case, workers who begin manufacturing in the region with no existing manufacturing will be
better off, because high trade costs make them profitable in their home market despite the limited
scale. When t is lower, the scale effect advantage of the existing manufacturing sector in the
foreign region dominates any trade cost advantage in starting manufacturing in the home region
to sell in the home market. Starting a small scale manufacturing operation is not profitable for

those workers. In our example with A,=1, the allocation of workers to manufacturing in the

specialized region is less than the city size that maximizes average product. Thus stable

specialization equilibria persist as 7 falls to 0.

The middle prong represents non-specialized equilibria. At high 1, they are autarkic and stable.
While manufacturing scale is low in both regions, trade is too costly for workers to profitably
move to take advantage of scale economies in one region. As trade costs fall, it becomes
potentially profitable to trade. However, once it is profitable to trade it is also profitable to
enhance manufacturing scale in one region relative to the other. Thus at these parameter values,
the only stable equilibria when 1 is low have manufacturing located in a single region, with the

other region producing only food.



In Figure B2 we turn to our second case, where agricultural productivity A, has risen to 1.5,

allowing more workers to enter manufacturing. As in the low agricultural productivity case,
specialization equilibria are not stable at the highest t . As in the previous case, when trade costs
are high, the only non-specialized equilibrium is autarky. However, what is new in this case is
that, as trade costs fall and autarky becomes unstable, a trade equilibrium without specialization
now becomes stable. In this equilibrium, both regions have enough manufacturing scale that
shifting a small number of manufacturing workers one way or another is not profitable for
workers. Given our assumption of a slight coastal comparative advantage in manufacturing, the
coast exports manufactured goods in this equilibrium, but such goods are produced in both

regions.

Figure B3 shows the existence of the different classes of equilibria in (A4 /> T) parameter space
for values of 4 / from 1 to 2.3 and 1 from 0.01 to 0.6. In the upper left of the figure, where

agricultural productivity is high and trade costs are low, the only equilibrium is one in which
manufacturing takes place in both regions (area G). At this equilibrium, the coast has a
comparative advantage in manufacturing, so it exports this good. Maintaining low trade costs but
lowering agricultural productivity, there are a series of different equilibrium configurations: in
area B, there are two equilibria: one with trade and manufacturing taking place in both regions,
and one with trade and manufactures produced only on the coast. In area C, there are three
equilibria: the two just listed as well as one in which manufactures are produced only in the
interior. For even lower agricultural productivity, maintaining low trade costs, are only two
equilibria, those where manufactures are produced in a single region (area D). Raising trade
costs (i.e. moving from left to right in the figure), autarky appears as a possible equilibrium,
although there are also possible equilibria where manufactures are produced in one or both
regions (areas E and F). Finally, with high enough trade costs, the only possible equilibrium is

autarky (area A).

Figure B3 demonstrates the path dependence we explore empirically in the paper. Circa 1800, all

of the world was in the high trade cost and low agricultural productivity autarkic equilibrium at



the lower right in area A. In the countries that developed early, the historical paths of rising
agricultural productivity and transport costs that did not fall too quickly maintained the economy
in areas A, E, or F, in all of which there was a stable autarkic equilibrium. Although we do not
model persistence explicitly, our assumption is that in such areas, an economy that was formerly
at the autarkic equilibrium will remain there. Finally, with further declines in transport costs,
these early developing economies moved into areas B, C, or G, all of which lack an autarky
equilibrium, but do feature an equilibrium with non-specialized trade. Again, in the absence of
an explicit model of persistence, we assume that when the autarkic equilibrium disappeared,
these economies naturally moved to the non-specialized trade equilibrium, which featured very

similar distributions of population and economic activity between regions.

Today’s developing world followed a different path, with the fall in transport costs relative to the
rise in agricultural productivity occurring earlier. In this case, countries entered area D in the
figure, where neither autarky nor non-specialized trade is a stable equilibrium. Manufactures
will be produced in only one region, and it is natural to expect that this would be the coast, where
productivity is higher. Once this specialization equilibrium has been entered, persistence would
mean that further increases in agricultural productivity (moving into areas C and B) would not
move the economy away from the equilibrium in which manufactures are produced in only one
region. Thus, by the time of the mid- to late-20th century agricultural revolution in the
developing world, urbanization (and manufacturing activity) is more concentrated in a smaller

set of regions with better access to world markets.

Algorithm to solve the model
The algorithm begins by creating a vector of all possible interior populations and a
corresponding vector of all possible coastal populations based on L and L, such that:
L. =L-1L,
To find equilibria, we cycle through these vectors in a loop. As a result, the following steps are

carried out for a fixed population allocation between the interior and coast.



First, we create another vector of all possible Ly values, ranging from 0 (no agriculture in the

interior) to the entire interior population (everyone is employed in agriculture in the interior).

Then, a corresponding vector is created of Lfc values. This vector is calculated based on food

needs of the entire population, solving the following equation based on the text:
L
Lf ¢ Afc

We subsequently cycle through these vectors in another loop, nested within the previous one.
Consequently, the following steps are carried out for fixed regional agricultural labor forces and
regional population allocations.

Within these two loops, we begin to find equilibria. If L. <L and L, <L, (both regions have

some manufacturing labor force), then we calculate L,,. and L, ; using the following equation:

Lmr = Lr - Lfr

Now that we have L., L., Lﬁ. , Lfc , L,.,and L,., we calculate prices in each region based on

the average product of agriculture and manufacturing in each region (so that wages are equalized
across sectors within each region):
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Next, we determine which of the two regions is exporting manufactured goods. This can be
determined by checking which of the two regions produces less food than its population requires.
Then, we check if the inter-regional goods market clears by checking if prices in the exporting
region are equal to prices in the importing region, adjusted for the iceberg trade cost 1 . For most

allocations of L, and L this condition is not met, and the algorithm simply ends at this point

and starts at the next allocation of Lfc and Lﬁ. .

However, if this condition is met, manufacturing consumption per capita is calculated for each
region. In the exporting region, manufacturing consumption is calculated by subtracting the

quantity of manufactured goods that are exported from the total quantity of manufactured goods



produced in the region, divided by the region’s population. The quantity of exported
manufactured goods is determined utilizing the fact that the inter-regional goods market clears.
As a result, exported manufactured goods necessarily equals the quantity of imported food
divided by the price of manufactured goods in the region. The quantity of imported food is
determined by the gap in the region’s food needs and food production in the region.

In the importing region, manufacturing consumption per capita is equal to total manufactured
goods produced plus the quantity of imported manufactured good, divided by regional
population. Analogously to the previous case, the value of imported manufactured goods is
determined by the quantity of exported food divided by price of manufactured goods in that

region.

Manufacturing consumption in each region is not necessarily equal at this point. As such, this
data point is recorded as a “possible equilibrium,” where every equilibrium condition is met
except that manufacturing consumption is equal across regions. If manufacturing consumption is
also equal across regions, then this data point is recorded as an “equilibrium.”

It L,=LcorL,=L,, then we have a corner solution where one region has no manufacturing
labor force. In this case, L,,, and L, ; are calculated just like before. Prices in the region that has

a manufacturing labor force are calculated using the average products of agriculture and
manufacturing just like above. However, prices in the region that has no manufacturing labor
force are now determined solely by adjusting the other region’s prices by the iceberg trade cost.
Next, manufacturing consumption per capita is calculated for each region. The region that has a
manufacturing labor force obviously exports manufactured goods in this case. Manufacturing
consumption per capita in this region is equal to total manufactured goods minus exported
manufactured goods (determined just as before) divided by regional population. In the region
with no manufacturing labor force, manufacturing consumption is just equal to imported
manufactured goods divided by regional population.

This data point is recorded as a possible equilibrium. If manufacturing consumption is also equal
across regions, then this data point is recorded as an equilibrium. This ends the loop through

possible values of L, and L.
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Next we address the endogenous no-trade equilibria where, as the name might imply, there is no
trade between the two regions. First we check if the current (fixed) population allocation is

feasible in that each region can feed itself without any trade. Then, we calculate L, and Ly

based on each region’s individual food needs, remembering that there is no trade between

regions. As a result:

e
Lﬁ—(;)

L, and L, are then calculated using regional population and agricultural labor force. Prices

for each region are also calculated based on the average product of agriculture and
manufacturing so that wages are equalized across sectors in a region. Next, we check if prices are

in the “no-trade band” where no amount of trade is profitable, or:

DPmi
1-t
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If this condition is met, then there is no incentive for trade between regions. We then calculate
manufacturing consumption per capita in each region as total manufactured goods divided by
regional population. Since the regional populations are still fixed (i.e. no mobility between
regions), manufacturing consumption is not necessarily equal across regions. This data point is
recorded as a possible equilibrium; every equilibrium condition is met except that manufacturing
consumption is equal across regions. If manufacturing consumption is also equal across regions,
then this data point is recorded as an equilibrium. This ends the loop through possible values of
L..

This ends the procedure for calculating equilibria for a set of parameters. Next, we check the
stability of all “full equilibria,” where all markets clear and manufacturing consumption is equal
across regions. We define two types of stability. “Type 1 stability” occurs when there is no

incentive to move between regions. “Type 2 stability” occurs when there is no incentive to move

industries within regions (i.e. move from agriculture to manufacturing).

11



To check type 1 stability, we take 100 people from the coast and move them to the interior. We
allow for all other markets to clear, but manufacturing consumption is not equal between regions
(i.e. calculate the resulting “partial equilibrium”). If the people who moved have lower

consumption than before, then the equilibrium passes the stability check.

To check type 2 stability, we take 100 people from agriculture and move them into
manufacturing in a single region, which puts the labor market in that particular region in
disequilibrium. We then calculate the agricultural labor force in the other region based on the
food needs of the entire population. We hold regional populations constant, so manufacturing
labor forces are determined by regional population minus agricultural labor force. Next, since we
still allow the labor market in the other region (where people did not initially change sectors) to
be in equilibrium, we calculate prices in that region using the average product of manufacturing
and agriculture like in earlier steps. Prices in the region where the labor market is in
disequilibrium are then determined by prices in the other region adjusted for the iceberg trade
cost. Wages in agriculture and manufacturing are finally calculated for that region. If the
manufacturing consumption of manufacturing workers rises above that of their neighbors in
agriculture within the region, then the equilibrium fails the stability check. The stability test is
passed if manufacturing consumption of manufacturing workers in, for example, the interior is
below food workers in the interior. We note that under stability in this experiment in all
examples, food workers in the interior have the highest consumption nationally and

manufacturing interior workers the lowest, and vice versa for instability.

Reference
Duranton, Gilles, and Diego Puga, “Micro-foundations of urban agglomeration economies,” in
Handbook of Regional and Urban Economics, Volume 5, Chapter 48, 2063-2117, Gilles

Duranton, J. Vernon Henderson and William C. Strange eds. (Elsevier, 2004).
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Figure B1. Equilibria with low agricultural productivity (Ay = 1)
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Figure B3. Equilibria in agricultural productivity-transport cost (Ay — 7) phase space
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Figure C1. Log Nonzero Lights in 2010
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Table C1. Intensive and Extensive Margin R-squared

NoFE FE
Both margins 0.467  0.577
Extensive margin, LPM 0.390  0.480
Intensive margin, OLS 0.258  0.360
Country FE, extensive margin 0.272
Country FE, intensive margin 0.229
Base, both margins 0.020 0.355
Agriculture, both margins 0.450  0.566
Trade, both margins 0.066  0.370

10

Notes: Each number represents an R? value from a separate regression on all geographic variables or the
subset shown. In extensive margin rows, the dependent variable is a dummy for lights being positive, and
the sample is the full global sample. In the intensive margin rows, the dependent variable is In(lights), and

the sample is grid squares with positive light values. FE stands for country fixed effects.
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Table C2. Intensive and Extensive Margin Coefficients

no country FEs

w/country FEs

Extensive Intensive Extensive Intensive
ruggedness (000s) -0.000441 -0.0282***  0.000933*** -0.0220***
(0.000269) (0.00189) (0.000303) (0.00211)
malaria index -0.00644***  -0.0453***  -0.00497*** -0.0368***
(0.000437) (0.00428) (0.000443) (0.00288)
tropical moist forest -0.00415 -0.190*** 0.0389*** -0.404***
(0.00980) (0.0545) (0.0109) (0.0570)
tropical dry forest 0.0606*** -0.120* 0.179*** -0.0685
(0.0113) (0.0615) (0.0127) (0.0611)
temperate broadleaf 0.157*** 0.603*** 0.178*** 0.753***
(0.00926) (0.0515) (0.00988) (0.0542)
temperate conifer 0.0466*** 0.135** 0.100*** 0.386***
(0.0118) (0.0604) (0.0120) (0.0627)
boreal forest -0.180*** -0.423*** -0.0813*** -0.313***
(0.0122) (0.0676) (0.0118) (0.0675)
tropical grassland 0.0184** -0.220*** -0.0878*** -0.870***
(0.00755) (0.0568) (0.00877) (0.0568)
temperate grassland 0.184*** 0.147** 0.152%** 0.0127
(0.00892) (0.0500) (0.00991) (0.0525)
montane grassland 0.0806*** 0.391*** 0.0776*** 0.0231
(0.0122) (0.0645) (0.0133) (0.0671)
tundra -0.230*** -0.594*** -0.176*** -0.334%**
(0.0134) (0.103) (0.0131) (0.0960)
Mediterranean forest 0.218*** 0.443*** 0.0760*** 0.256***
(0.0130) (0.0697) (0.0123) (0.0643)
mangroves -0.0495** -0.310%** 0.0321 -0.365%**
(0.0198) (0.102) (0.0224) (0.111)
temperature (deg. C) 0.0226*** 0.0196*** 0.0262*** 0.0882***
(0.000602) (0.00445) (0.000515) (0.00345)
precipitation (mm/month)  -0.00160***  -0.00568***  -0.00118*** -0.00343***
(0.0000647)  (0.000378)  (0.0000604) (0.000349)
growing days 0.00111***  0.00520***  0.00134*** 0.00445***
(0.0000398)  (0.000227)  (0.0000385) (0.000215)
land suitability 0.353*** 0.802%** 0.418*** 0.740***
(0.00776) (0.0411) (0.00784) (0.0396)
abs(latitude) 0.00880*** 0.00343 0.0176*** 0.0520***
(0.000498) (0.00324) (0.000375) (0.00211)
elevation (km) 0.0455*** -0.270*** 0.0907*** 0.0391
(0.00410) (0.0270) (0.00385) (0.0250)
coast -0.0000640 0.545*** -0.00200 0.561***
(0.00440) (0.0308) (0.00517) (0.0337)
distance to coast (000s km)  -0.0969*** -0.288*** -0.102*** -0.408***
(0.00516) (0.0328) (0.00450) (0.0289)
harbor < 25km 0.137*** 0.524*** 0.152%** 0.452***
(0.00740) (0.0394) (0.00824) (0.0441)
river < 25km 0.113*** 0.320%** 0.129*** 0.329***
(0.00840) (0.0467) (0.00884) (0.0528)
lake < 25km 0.0626*** 0.644*** 0.0756*** 0.682***
(0.0121) (0.0776) (0.0125) (0.0814)
N 242184 97181 242184 97181

Notes: Each column reports OLS coefficient estimates from a separate regression. In extensive margin
columns, the dependent variable is a dummy for lights being positive, and the sample is the full global
sample. In the intensive margin columns, the dependent variable is In(lights), and the sample is grid squares
with positive light values. FEs stands for country fixed effects. Standard errors, clustered by 3x3 sets of
grid squares, are in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table C3. Full Nonlinear Differential Coeflicient Results

Education  Urbanization GDP per capita

agriculture differential (o) 0.332%** 0.194*** 0.254***
(0.0238) (0.0209) (0.0239)
trade differential () -0.650*** -0.393*** -0.526***
(0.0178) (0.0218) (0.0321)
ruggedness (000s) 0.00507** 0.000734 0.0112***
(0.00217) (0.00209) (0.00253)
malaria index -0.0809*** -0.0749*** -0.0553***
(0.00296) (0.00277) (0.00276)
tropical moist forest -1.697%** -1.453*** -1.110%**
(0.0762) (0.0743) (0.0761)
tropical dry forest 0.0264 0.260*** 0.385%**
(0.0893) (0.0887) (0.0910)
temperate broadleaf 1.080*** 1.400*** 0.747%**
(0.0668) (0.0679) (0.0765)
temperature conifer 0.626*** 0.804*** 0.278***
(0.0745) (0.0772) (0.0858)
boreal forest -1.203*** -1.175%* -2.233***
(0.0794) (0.0788) (0.0983)
tropical grassland -1.566%** -1.569*** -1.394***
(0.0537) (0.0526) (0.0540)
temperate grassland 0.146** 0.321*** -0.330***
(0.0582) (0.0603) (0.0693)
montane grassland 0.570*** 0.355*** 0.183**
(0.0768) (0.0811) (0.0861)
tundra -1.775% -1.877*** -3.193***
(0.0900) (0.0919) (0.115)
Mediterranean forest 0.261%** 0.522%** -0.0133
(0.0813) (0.0878) (0.0879)
mangroves -1.936%** -1.438*** -1.289***
(0.156) (0.143) (0.153)
temperature (deg. C) -0.0547+** -0.0594*** -0.0807***
(0.00153) (0.00155) (0.00175)
precipitation (mm/month)  -0.00856***  -0.00928*** -0.00913***
(0.000392) (0.000400) (0.000426)
growing days 0.00658*** 0.00605*** 0.00604***
(0.000260) (0.000265) (0.000285)
land suitability 2.550*** 2.594*** 2.629***
(0.0551) (0.0570) (0.0621)
abs(latitude) -0.0310*** -0.0360*** -0.0167***
(0.00121) (0.00121) (0.00145)
elevation (km) -0.599*** -0.605*** -0.684***
(0.0195) (0.0201) (0.0228)
coastal -0.0753 -0.143*** -0.00128
(0.0700) (0.0543) (0.0664)
distance to coast (000s km)  -2.003*** -1.611*** -1.801***
(0.0373) (0.0383) (0.0396)
harbor < 25km 3.011%** 2.665*** 2.435***
(0.121) (0.103) (0.105)
river < 25km 1.251%** 1.102*** 1.036***
(0.110) (0.0940) (0.112)
lake < 25km 0.170 0.523*** 0.132
(0.148) (0.139) (0.163)
N 227032 241995 180912

Notes: Each column reports non-linear least squares estimates of equation (3), for
education, urbanization and GDPpc split variables. Standard errors, clustered by
3x3 sets of grid squares, are in parentheses. * p<0.1, ** p<0.05, *** p<0.01.



