Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review

W.S. LESLIE, C.R. HANKEY and M.E.J. LEAN

From Human Nutrition, Division of Developmental Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK

Summary

Several drugs, or categories of drugs, listed by the WHO and other writers and used in the treatment of chronic disease, are consistently associated with weight gain as a side effect and considered ‘obesogenic’. The extent to which they may contribute to the multifactorial process behind obesity is not well documented. We systematically reviewed papers from Medline 1966–2004, Embase 1980–2004, PsycINFO 1967–2004, and Cochrane Register of Controlled Trials, to determine the effect on body weight of some drugs that are believed to favour weight gain. We included randomized controlled studies of adult participants (>18 years) prescribed a drug considered obesogenic, that compared the ‘obesogenic’ drug with placebo, an alternative drug or other treatment, and that had a duration of at least 3 months: 43 studies totalling 25,663 subjects met these criteria. The main objective of the majority of studies was to compare the efficacy and safety of drug therapy, with weight change recorded under safety outcomes; weight change was a primary outcome measure in only six studies. There was evidence of weight gain for all drugs included, up to 10 kg at 52 weeks. Differences in dosage, patient population, duration of treatment and dietary advice make generalization of the results difficult. Data on body weight are often not recorded in published clinical trials or is reported in insufficient detail. This side-effect has potentially serious consequences, and should be mentioned to patients. Weight management measures should be routinely considered when prescribing drugs known to promote weight gain. Future clinical trials should always document weight changes.

Introduction

Obesity continues to increase in prevalence.1–3 In the UK, around half of women and two-thirds of men are overweight or obese.4,5 Recent Scottish data show that the figure for women has risen to 60%.6 In addition to being a major health problem in its own right, obesity is associated with a range of serious symptoms and co-morbid conditions. The estimated cost to the UK Health Service of obesity and related conditions at present is immense.5,7 If the rise in obesity continues, it is thought that by the year 2010 one third of all adults in the UK will be obese,8 and the costs to health care services will rise to an estimated £3.6 billion.5

Obesity is a consequence of energy imbalance, when energy intake exceeds energy expenditure over a prolonged period of time. Social and environmental forces have a powerful influence over energy intake and expenditure, and individuals vary in their susceptibility to these influences due to genetic and biological factors. It is the interaction of
all these elements that gives rise to obesity. Many prescription drugs in current use are associated with weight changes. For some (e.g. certain serotonin reuptake inhibitors, oral contraceptives), the evidence of an effect on body weight is less consistent, while others are consistently associated with weight gain, and are considered obesogenic (Table 1). This effect can arise as a consequence of differing mechanisms, such as increased appetite (corticosteroids) or reduced metabolic rate (beta-adrenoceptor blockers). For some drugs, weight loss may have occurred as a result of the underlying disease and recovery on effective treatment will include weight regain, which would not be considered an adverse effect. However, in many cases, weight gain is an unwanted side-effect. These drugs are used in the management of chronic disease and therefore prescribed on a long-term basis. In previous research, 9% of adults attributed weight gain to drugs they were prescribed.

The development of obesity is a long-term multifactorial process in which obesogenic drugs play a contributory role. This review quantifies the adverse effects on body weight of those drugs that are consistently reported as obesogenic (Table 1).

Methods

We electronically searched Medline 1966–2004, Embase 1980–2004, PsycINFO 1967–2004, and the Cochrane Register of Controlled Trials. The drug name or drug category was the primary key word for each search. This was mapped to relevant subheadings. The second keyword search used the terms ‘weight adj2 gain’ or ‘weight adj2 change’. Primary and secondary searches were then combined and limited to human, English language, adults, clinical trial, randomized controlled trial or controlled clinical trial. Reference lists of all relevant papers were checked. We did not hand-search journals or search the ‘grey’ literature as part of this review.

Selection of studies

Articles were selected on the basis of title and abstract. Studies were included according to the following eligibility criteria: only randomized controlled studies; adult participants (>18 years) prescribed a drug considered obesogenic; duration ≥3 months; comparison of the ‘obesogenic’ drug with placebo, an alternative drug or other treatment. Outcome measures had to include measured weight change, reported quantitatively. Studies that primarily investigated the use/effect of a combination of ‘obesogenic’ drugs were excluded, as were studies in which body weight was self-reported. Studies where the drug was used to treat diseases characterized by weight loss (e.g. type 1 diabetes) were also excluded.

Quality assessment

Two reviewers checked independently that the studies identified by the search strategy met the inclusion criteria, and assessed the methodological quality of the included studies. Quality assessment focussed on the adequacy of the randomization procedure. As the identified studies involved different populations, drugs and dosages, no quantitative meta-analyses were done.

Results

A total of 628 titles and abstracts were reviewed, and 139 publications were retrieved and reviewed in greater detail. From these, 43 studies (total 25 663 subjects) were identified that met our inclusion criteria. The main reasons for exclusion were: study duration <12 weeks; non-randomized study design; weight gain not reported or not quantified (Figure 1).

Valproate

All four studies compared valproate with an alternative drug; no placebo-controlled studies were identified. Comparison was made with olanzapine in the treatment of bipolar disorder and acute mania. The objective of both these studies was to compare the drugs in terms of efficacy and safety. Biton et al. compared valproate with lamotrigine in patients with epilepsy. The aim of the fourth study was to determine the efficacy and safety of topiramate, in comparison with cabamazepine and valproate monotherapy, in the initial treatment of newly diagnosed epilepsy.

Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>Main use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin, sulphonylureas, thiazolidiones</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Inflammatory disease</td>
</tr>
<tr>
<td>Cyproheptadine</td>
<td>Allergy, hay fever</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>Psychosis</td>
</tr>
<tr>
<td>Sodium valproate</td>
<td>Epilepsy</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>Depression</td>
</tr>
<tr>
<td>Lithium</td>
<td>Bipolar disorder</td>
</tr>
</tbody>
</table>

From references 3, 9, 10, 11, 12.
Weight change was the primary outcome measure in only one study, and a secondary measure to assess safety in the remaining studies. The mean dosage of valproate differed in each study (Table 2).

Lithium

Only one study fulfilled the inclusion criteria and compared lithium with carbamazepine as a prophylactic agent in bipolar disorder. The main outcome measure was relapse, with weight gain recorded as an assessment of side-effects. The initial dose of lithium was 400 mg twice daily.

Atypical antipsychotics

In three studies, olanzapine was compared with placebo in the treatment of alcohol dependence disorder, and borderline personality disorder. Ziprasidone was compared with placebo in the treatment of schizophrenia. In the remaining studies, comparisons were made between an atypical antipsychotic and an alternative drug: clozapine, olanzapine, and risperidone vs. haloperidol, olanzapine vs. sodium valproate, olanzapine vs. haloperidol, risperidone vs. amisulpride, clozapine vs. chlorpromazine, olanzapine vs. aripiprazole and olanzapine vs. amisulpride.

Only two studies specifically examined weight change as a primary outcome; in the remainder of the studies, clinical response was the primary outcome with weight change recorded as a means of assessing safety.

Corticosteroids

Only one randomized controlled trial was identified comparing prednisone with radiotherapy in the treatment of Graves’ ophthalmopathy. The objective of the study was to compare the efficacy and tolerability of the treatments: clinical response was the primary outcome measure, with weight change recorded as a side-effect.

Insulin

The studies included were restricted to the treatment of type 2 diabetes. In all studies, insulin therapy alone was compared with either oral agents or with
<table>
<thead>
<tr>
<th>Drug</th>
<th>Reference</th>
<th>Condition</th>
<th>Follow-up (weeks)</th>
<th>n</th>
<th>Dose</th>
<th>Weight change (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproate</td>
<td>Zajecka 2002</td>
<td>Bipolar disorder</td>
<td>12</td>
<td>120</td>
<td>2115 mg/day*</td>
<td>+2.5**</td>
</tr>
<tr>
<td>Lithium</td>
<td>Tohen 2003</td>
<td>Epilepsy</td>
<td>15, 26</td>
<td>621</td>
<td>1250 mg/day</td>
<td>+2.0**</td>
</tr>
<tr>
<td>Clozapine</td>
<td>Biton 2001</td>
<td>Epilepsy</td>
<td>32</td>
<td>141</td>
<td>1822 mg/day*</td>
<td>+4.2 (SD 4.2)</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Lieberman 2003</td>
<td>Schizophrenia</td>
<td>36</td>
<td>52</td>
<td>200–800 mg/day</td>
<td>+9.9**</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Zajecka 2002</td>
<td>Bipolar disorder</td>
<td>15, 26</td>
<td>621</td>
<td>9.1 mg/day*</td>
<td>+7.1 (SD 6.1)</td>
</tr>
<tr>
<td>Lithium</td>
<td>Tohen 2003</td>
<td>Borderline personality disorder</td>
<td>14</td>
<td>251</td>
<td>30.4 mg/day*</td>
<td>+5.4 (SD 4.6)</td>
</tr>
<tr>
<td>Clozapine</td>
<td>Lieberman 2003</td>
<td>Bipolar disorder</td>
<td>36</td>
<td>52</td>
<td>400 mg/day</td>
<td>+2.8 (SD 5.7)</td>
</tr>
<tr>
<td>Clozapine</td>
<td>Czobor 2002</td>
<td>Schizo-affective disorder</td>
<td>14</td>
<td>151</td>
<td>30.4 mg/day*</td>
<td>+2.8**</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Tran 1999</td>
<td>Schizo-affective disorder</td>
<td>51</td>
<td>110</td>
<td>11.5 mg/day*</td>
<td>+5.0 (SD 7.3)</td>
</tr>
<tr>
<td>Lithium</td>
<td>Lieberman 2003</td>
<td>Bipolar disorder</td>
<td>36</td>
<td>52</td>
<td>9.1 mg/day*</td>
<td>+4.3**</td>
</tr>
<tr>
<td>Risperidone</td>
<td>Czobor 2002</td>
<td>Schizo-affective disorder</td>
<td>14</td>
<td>151</td>
<td>40 mg/day</td>
<td>+4.2**</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>Arato 2002</td>
<td>Schizophrenia</td>
<td>24</td>
<td>28</td>
<td>5.3 mg/day*</td>
<td>+2.8 (SD 5.7)</td>
</tr>
<tr>
<td>Prednisone</td>
<td>Prummel 1993</td>
<td>Graves ophthalmopathy</td>
<td>24</td>
<td>56</td>
<td>Decreasing 60–2.5 mg/day</td>
<td>+2.0**</td>
</tr>
<tr>
<td>Insulin</td>
<td>Yki-Jarvinen</td>
<td>Type 2 diabetes</td>
<td>12</td>
<td>153</td>
<td>2 injections</td>
<td>+1.8 (SD 0.5)</td>
</tr>
<tr>
<td>Glipizide</td>
<td>Simonson 1997</td>
<td>Type 2 diabetes</td>
<td>16</td>
<td>143</td>
<td>5–60 mg/day</td>
<td>+2.9 (SD 0.5)</td>
</tr>
<tr>
<td>Glimepiride</td>
<td>Bautista 2003</td>
<td>Type 2 diabetes</td>
<td>10 yrs</td>
<td>3867</td>
<td>1.2 injections</td>
<td>+4.6.5**</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>UKPDS 1998</td>
<td>Type 2 diabetes</td>
<td>10 yrs</td>
<td>3867</td>
<td>2.5–20 mg/day</td>
<td>~+4.0**</td>
</tr>
<tr>
<td>Chlorpropamide</td>
<td>UKPDS 1998</td>
<td>Type 2 diabetes</td>
<td>10 yrs</td>
<td>3867</td>
<td>100–500 mg/day</td>
<td>~+5.0**</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>Patel 1999</td>
<td>Type 2 diabetes</td>
<td>12</td>
<td>380</td>
<td>0.05 mg/day</td>
<td>-0.95**</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>Patel 1999</td>
<td>Type 2 diabetes</td>
<td>12</td>
<td>380</td>
<td>0.25 mg/day</td>
<td>-0.54**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0 mg/day</td>
<td>+0.18**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0 mg/day</td>
<td>+0.36**</td>
</tr>
</tbody>
</table>
insulin plus oral agents. The dosage of insulin varied in each study, and was calculated according to the participant’s body weight, subsequently adjusted according to blood glucose results.

Sulphonylureas

Treatment with a sulphonylurea was compared with placebo alone in two studies, with another oral hypoglycaemic agent and placebo in two studies, with insulin in two studies, and with an alternative oral hypoglycaemic agent in three studies. Weight change was a primary outcome measure in only one study. In the UKPDS study, the main objective was to determine the risk of micro or macro-vascular complications, with weight change recorded under adverse events. The objective of the remaining studies was to determine efficacy, safety and tolerability, with clinical response as the primary outcome measure and weight change recorded under safety outcomes.

Thiazolidinediones

Three studies compared a thiazolidinedione with placebo in type 2 diabetic patients. Patel et al. assessed the metabolic effects of four doses of rosiglitazone, Iwamoto et al. investigated the efficacy and safety of troglitazone and Wallace et al. examined the effect of pioglitazone on beta cell function and insulin sensitivity. The metabolic effects of pioglitazone were compared with metformin in one study, and in the final study pioglitazone was compared with glimepiride with regard to changes in glycaemic control and insulin sensitivity. In all studies, weight change was a secondary outcome.

Tricyclic antidepressants

All three studies compared the efficacy and tolerability of a tricyclic antidepressant with an alternative anti-depressant: paroxetine in comparison with nortriptyline, bupropion compared with doxepin, and mirtazapine with amitriptyline and placebo. Weight change was the primary outcome measure in one study, and assessed as an adverse event in the other two. The dosage of tricyclic antidepressant was not reported in one study, and differed in the other two.

Beta-adrenergic blocking agents

Two studies compared the effect on lipid profiles between a chosen beta-blocker and an alternative anti-hypertensive agent: captopril vs. metoprolol and nifedipine vs. atenolol. The effect of long-term treatment with propranolol on body weight study was the main outcome in one study. Two studies compared treatment with a beta-blocker with bendroflumethiazide: one investigated the metabolic effects, the other compared the effects on mortality. Wilhelmson et al. compared beta-blocker treatment with diuretic treatment to determine differences in the incidence of non-fatal
myocardial infarction, coronary heart disease mortality and total mortality.

Cyproheptadine

No studies were identified that fulfilled the inclusion criteria.

Methodological quality of included studies

All studies included in this review were described as randomized, but in the majority (72%) the methods of randomization and concealment were not described. In one study, the method of randomization (consecutive and alternate) was inadequate. In 11 studies the method of randomization was clearly described and considered adequate. Inclusion and exclusion criteria were clearly described in all studies. Intention-to-treat analysis was used in 51% of studies.

Weight change

In the majority of studies, weight change was not a primary outcome measure, but was measured and recorded under safety outcomes; weight change was a primary outcome measure in only six studies. The effects on body weight differed greatly amongst the different categories of drugs. In the majority of studies, weight gain was the result of treatment, with some of the greatest weight gains seen in subjects prescribed anti-psychotic medications. However, weight loss was observed in some studies (Table 2).

Six studies investigated whether weight gain was dose-related. Results varied, with three studies reporting no relationship between drug dosage and weight gain. Some correlation was observed between dosage of insulin and weight gain. One study suggested that a clinically significant increase in body weight might be observed at higher doses of rosiglitazone.

Discussion

Weight change occurs over time and against a background of progressive weight gain in the ‘normal’ population. There is no ideal time to examine the possible obesogenic effects of drugs. It can be assumed that most such drugs will have a most marked effect early in treatment, reaching a plateau effect by 6–12 months (although all healthy subjects are likely to continue to gain weight at around 1 kg/year).

If the underlying disease for which the drug was prescribed has caused weight loss, then recovery on effective treatment will include weight regain.

The primary treatment of type 1 diabetes is an obvious example. This was not considered an obesogenic effect, and such studies were excluded by our own inclusion criteria.

The effect of the drug treatment on body weight was reported in all of the studies in this review, and provides evidence that weight gain is associated with some drugs, and is a major and continual burden on public health. All of the drugs included in this review are used in the treatment of chronic disease. In the UK, it is estimated that around 2.6 million people have been diagnosed with coronary heart disease, and beta-blockers (unless contraindicated) have a prominent role in its management. Valproate is one of the first-line treatments for epilepsy, and is also used in the treatment of manic episodes associated with bipolar disorder. In Scotland, around 20 000–40 000 people have active epilepsy, with about 2000–3000 new cases per year. In England ~380 000 people suffer from the disease (1:130 people). Bipolar disorder is the third most common mood disorder after major depression and schizophrenia, and affects around 1% of the population.

In Scotland alone, the number of prescriptions dispensed for beta-blockers and tricyclic antidepressants between 2004 and 2005 exceeded 1 million and 2 million, respectively (Table 3) (Audrey Thompson, personal communication).

It is generally accepted that during adult life, most people will gain weight. The rate at which weight is gained varies, but a 0.5–1 kg gain per year

<table>
<thead>
<tr>
<th>Drug class</th>
<th>No. of prescriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-blockers (BNF 2.4)</td>
<td>2936456</td>
</tr>
<tr>
<td>Atypical antipsychotics</td>
<td>275114</td>
</tr>
<tr>
<td>Lithium</td>
<td>81252</td>
</tr>
<tr>
<td>Sodium valproate</td>
<td>193064</td>
</tr>
<tr>
<td>Tricyclic antidepressant</td>
<td>1134611</td>
</tr>
<tr>
<td>Intermediate and long-acting insulins</td>
<td>352632</td>
</tr>
<tr>
<td>Short-acting insulins</td>
<td>105207</td>
</tr>
<tr>
<td>Sulphonylureas</td>
<td>442833</td>
</tr>
<tr>
<td>Pioglitizone</td>
<td>36898</td>
</tr>
<tr>
<td>Rosiglitizone</td>
<td>65458</td>
</tr>
<tr>
<td>Glucocorticoid therapy (BNF 6.3.2)</td>
<td>517366</td>
</tr>
</tbody>
</table>
is considered average in the general population. In some studies in this review, weight gain in excess of this was observed over a much shorter duration: in particular, those involving anti-psychotic drugs. Olanzapine and clozapine were associated with the greatest weight gains, a finding that concurs with previous reviews in this area.67,68 The weight gains with beta-blocker therapy were relatively small, but more marked in those prescribed propranolol. Previous research has also identified propranolol as the beta-blocker most likely to cause weight gain.69,70

In the UK at present, a significant proportion of the population are considered either overweight or obese,5,6 and an annual weight gain of 5 kg/year or more is not uncommon. It is therefore likely that prior to treatment with a drug known to favour weight gain, many individuals will already be overweight and struggling to avoid further gain. The additional effect of obesogenic drug therapy may tip the balance to increase BMI towards the obese category, or be sufficient to make co-morbidities clinically apparent. Given the common and long-term use of many of these drugs, it is likely that they play a significant contributory role in the increasing prevalence of obesity.

Non-compliance with any drug therapy is a widespread problem,71 and around half of patients prescribed long-term medication for the management of chronic diseases do not comply fully with treatment.72 Poor compliance with drug therapy may lead to a worsening of the underlying condition and contribute to increased health care costs.73 Non-compliance is reported as an issue with many of the drugs included in this review,73–76 and the weight gain associated with them may contribute to this. For those prescribed anti-psychotic medication, weight gain is acknowledged as a major cause of non-compliance.76 It is unclear whether this known side-effect is routinely discussed with patients prior to prescription but it should be, on medico-legal grounds. The treatment of anti-psychotic-induced weight gain is now considered a treatment priority,77 and research on approaches to address this is a growing area.77–81 It would seem greatly preferable to discuss the probability of weight gain as a side-effect, and to provide effective advice and support to avoid weight gain. For a number of the drug classes included, weight management should form an essential part of treatment for the underlying disease, e.g. in type 2 diabetes and hypertension, access to dietitians should be routine. For other drugs (notably anti-psychotics) provision of dietary advice is a new consideration.82

Study limitations

The drugs included in the present review were those consistently reported in medical/scientific literature, used in the treatment of chronic disease and believed to affect weight.1,9–12 Many other drugs prescribed today may also affect weight. Few studies included in the review examined weight change as a primary outcome, and in many instances the variability of weight change was not reported. Studies that primarily investigated the effect of a combination of ‘obesogenic’ drugs were excluded, but it was not always possible to be certain that other drugs known to favour weight gain were not also being taken. However, the process of randomization should have ensured that any such confounding effect would have been similar in all groups.

Conclusions

This review provides evidence of the weight gain potential of some common drugs. It is perhaps only now, in light of the present epidemic of obesity, that the negative effect on body weight is a pertinent issue. Body weight and height are routinely recorded in virtually all clinical trials, but seldom reported. The potential of weight gain should be discussed with patients prior to the institution of therapy, both for medico-legal grounds and to ensure that weight maintenance is promoted and adhered to.

Acknowledgements

We thank Audrey Thompson, Medicines Management Advisor, Greater Glasgow Primary Care Trust, for information on drug prescribing. Financial support was provided by Roche Products Ltd, to permit the employment of WL.

References

14. NHS Centre for Reviews and Dissemination. Undertaking systematic reviews of research on effectiveness: CRD guidelines for those carrying out or commissioning reviews (CRD report 4). York, NHS Centre for Reviews and Dissemination, University of York, 1996.

60. British Heart Foundation Statistics [www.heartstats.org].

