Bleeding risk, physical functioning and non-use of anticoagulation among patients with stroke and atrial fibrillation

A.A. SCHMID1,2, S. OFNER3, R.I. SHORR4,5, L.S. WILLIAMS2,6,7,8,9 and D.M. BRAVATA2,6,8,10

From the 1 Department of Occupational Therapy, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, 2 VA HSR&D Stroke Quality Enhancement Research Initiative (QUERI), Indianapolis, IN, 3 Department of Biostatistics, Indiana University, Indianapolis, IN, 4 GRECC (182), Malcom Randall VAMC, Gainesville, FL, 5 Department of Epidemiology, University of Florida, Gainesville, FL, 6Roudebush Veterans Administration (VA) Medical Center, Health Services Research and Development (HSR&D) Center for Health Information and Communication, Indianapolis, IN, 7 Indiana University Center for Aging Research, Indianapolis, IN, 8 Regenstrief Institute, Inc., Indianapolis, IN, 9 Department of Neurology, Indiana University, School of Medicine and 10 Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA

Address correspondence to A.A. Schmid, Department of Occupational Therapy, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA. email: arlene.schmid@colostate.edu

Received 10 June 2014 and in revised form 30 July 2014

Summary

Background: Atrial fibrillation (AF) is common among people with stroke. Anticoagulation medications can be used to manage the deleterious impact of AF after stroke, however, may not be prescribed due to concerns about post-stroke falls and decreased functioning. Thus, the purpose of this study was to identify, among people with stroke and AF, predictors of anticoagulation prescription at hospital discharge.

Methods: This is a secondary analysis of a retrospective cohort study of data retrieved via medical records, including National Institutes of Health Stroke Scale score, Functional Independence Measure (FIM) motor score (motor or physical function), ambulation on second day of hospitalization, Morse Falls Scale (fall risk) and HAS-BLED score (Hypertension; Abnormal renal and liver function; Stroke; Bleeding; Labile INRs; Elderly >65; and Drugs or alcohol). Data analyses included bivariate comparisons between people with and without anticoagulation at discharge. Logistic-regression modeling was used to assess predictors of discharge anticoagulation.

Results: There were 334 subjects included in the analyses, whose average age was 73 years old. Anticoagulation was prescribed at discharge for 235 (70%) of patients. In the adjusted regression analyses, only the FIM motor score (adjusted OR = 1.015, 95% CI 1.001–1.028) and the HAS-BLED score (adjusted OR = 0.36, 95% CI 0.22–0.58) were significantly associated with anticoagulation prescription at discharge.

Conclusion: It appears that in this sample, post-stroke anticoagulation decisions appear to be made based on clinical factors associated with bleed risk and motor deficits or physical functioning. However, opportunities may exist for improving clinician documentation of specific reasoning for non-anticoagulation prescription.
Introduction

Atrial fibrillation (AF) is a major modifiable risk factor for stroke. Annually, 60,000 strokes occur in the 2.3 million Americans who have AF, 1 an important and serious combination that should be addressed. 2,3 AF and subsequent stroke risk, can be mitigated with the use of anticoagulation medications. Such medications can reduce the risk of stroke by two thirds, but these medications also increase the risk of future bleeding. 3,4 Guidelines for the management of patients with AF indicate that the appropriate choice of treatment should be guided by the relative risk of stroke and bleeding. 5 The net benefit of anticoagulation for AF has been shown to be greatest among patients with a history of stroke. 6 Having a stroke places patients at intermediate or high risk for future thromboembolic events; thus, stroke patients are likely to benefit the most from anticoagulation medications. 6,7

A potential barrier to the use of anticoagulation, especially among the elderly or those with impaired physical functioning, is the concern about fall risk. Patients with stroke are at increased risk for falls, with up to 73% falling in the first 6 months after stroke. 8 Falls remain common in the chronic post-stroke period 9 and are linked to injuries and need of medical care. 10 Impaired physical functioning and high fall risk may lead clinicians to be uncomfortable in prescribing anticoagulants for AF after stroke, despite the robust evidence supporting its use in the post-stroke population. 11 The objectives of this study were to identify, among Veterans with stroke and AF, predictors of anticoagulation prescription at hospital discharge, particularly examining the role of physical functioning and fall risk.

Methods

Design

This was a secondary analysis of a retrospective cohort of Veterans admitted to Veterans Administration Medical Centers (VAMC) with ischemic stroke (VHA Office of Performance Measurement (OPM)). 12 We utilized these data to assess the association between patient fall risk and physical functioning with anticoagulation medication prescription at time of hospital discharge.

Study population

For the original OQP Stroke Special Project, a cohort of Veterans was assembled using administrative data to identify patients with ischemic stroke based on a high-sensitivity algorithm using International Classification of Disease-9 codes. A sample of 5000 patients was obtained by including 100% of Veterans from small volume centers (≤55 patients) and a random sample of 80% of Veterans at high-volume centers (>55 patients). Patients were excluded if admitted for elective carotid endarterectomy, only for post-stroke rehabilitation, for a non-stroke condition when the ischemic stroke event occurred or to a VAMC that did not use the VHA electronic medical record system.

Data were obtained via electronic medical record abstraction. The data collection tool was designed and revised and pilot tested in collaboration with the senior chart reviewers over a period of several months. Whenever possible, data elements for this study were defined to be identical to items collected as part of the External Peer Review Program to ensure high quality of data collection (e.g. methods for collecting demographics, medications, laboratory data, etc). Specific training for the record abstraction for this study was developed and implemented using successful approaches deployed in a prior retrospective cohort study and included training models specific to the unique data elements that were collected in this study (e.g. the retrospective National Institutes of Health Stroke Scale [NIHSS]).

For this analysis, we included (Figure 1) Veterans with stroke and AF (n = 635) who were classified as being eligible for anticoagulation prescription for AF at discharge (n = 447), and who had a documented inpatient fall risk score (Morse Falls Scale, see below); the final sample was n = 334.

Potential predictors of anticoagulation

Patient-level data obtained from medical record review included: demographics, medical comorbidities (including past medical history, the Charlson comorbidity index, as well as concomitant medical conditions present upon admission), stroke symptom characteristics, vital sign data; ambulation status (at hospital day 2 and at discharge) and discharge disposition (categorized as home or not home). Among the 307 abstracted data elements, 90% had an interobserver agreement ≥70%. 12,13

Fall risk

We used the Morse Falls Scale (Morse) to determine fall risk, commonly used for in-hospital fall risk assessment. 14–16 The Morse-score was abstracted as part of the medical record review. The Morse was part of the nursing admission assessment at the majority of VA hospitals and therefore was routinely collected for most patients. Therefore, missing
Morse scores were related to facility policies regarding nursing admission processes. The Morse includes the following domains: falls history, secondary diagnoses, ambulation aides, intravenous therapy, gait impairment and mental status. We used the Morse score as a continuous variable in the analyses; higher scores represent higher fall risk; we also classified the Morse score into three categories: <25, low risk; 25–45, moderate risk; and >45, high risk.

Motor function

We used the reliable and valid motor component of the Functional Independence Measure (FIM) as a measure of motor functioning after stroke. FIM-motor data were available for 271 of patients in this sample. Higher scores represent better functioning and greater independence.

Stroke severity

We used valid and reliable retrospective NIHSS to assess stroke severity. The NIHSS is an 11-item scale and includes consciousness, vision, language, sensory, ataxia and arm and leg motor function. Increasing scores represent greater stroke severity.

Thromboembolic risk

We calculated two scores for use in evaluating the anticoagulation management: the CHADS2 and the hypertension; abnormal renal and liver function; stroke; bleeding; labile INRs; elderly > 65; and drugs or alcohol (HAS-BLED).

The CHADS2 score assesses the following domains: Congestive heart failure (1 point), Hypertension (1 point), Age >75 (1 point), Diabetes (1 point) and Stroke or Transient Ischmic Attack (TIA) (2 points). The CHADS2 is a commonly used prediction rule for estimation of thromboembolic risk among patients with AF. A CHADS2 score of >2 indicates increased thromboembolic risk and such patients are recommended for consideration for anticoagulation. Because all of the patients in this study had a stroke, each had a score of at least two, and therefore were considered at moderate to
high thromboembolic risk and anticoagulation would have been recommended for all such patients unless a contraindication existed (see below regarding contraindications).

We also calculated a HAS-BLED score, a scale that rates bleeding risk, the HAS-BLED scoring includes a point for HAS-BLED, including antiplatelet agents and non-steroidal anti-inflammatory drugs. A HAS-BLED score ≥3 indicates a high risk of bleeding and anticoagulation is cautioned for such patients. Although the HAS-BLED score can range from 0 to 9, the maximum score in this cohort was 8 because we did not have data regarding concomitant alcohol and drug use.

Outcome measure—anticoagulation

Veterans eligible for anticoagulation were identified via an algorithm similar to that which is used by the Joint Commission, developed to identify patients who were ideal candidates for antithrombotic therapy (yes or no). Patients were not considered appropriate for anticoagulation at discharge if they had a code status of comfort-care only, were discharged to hospice care, were discharged to other inpatient care, left against medical advice, were discharged to a Critical Access Hospital, were expired, the patient refused anticoagulation or if there was any documented contraindication to anticoagulation or reason for non-prescription of anticoagulation. Documentation of a contraindication for anticoagulation or other reason for a lack of anticoagulation was a specific item in the algorithm (yes or no ‘document a contraindication/reason for not prescribing an anticoagulant medication at discharge’, not applicable or patient refusal). Examples of reasons for not prescribing antithrombotic therapy included but were not limited to: allergy to antithrombotic therapy; current aortic bleeding disorder; brain/central nervous system cancer; cerebrovascular disease/hemorrhage; extensive/malignant cancer; hemorrhage, any type; intracranial surgery/biopsy; peptic ulcer, current; planned surgery within 7 days of discharge; risk or bleeding, current; unrepaired intracranial aneurysm. Anticoagulation for AF included warfarin, low-molecular weight heparin, alternative anticoagulants or intravenous heparin. Inter-rater agreement for all of the variables related to anticoagulation at discharge was 89% or higher.

Statistical analysis

All analyses were completed using SAS statistical software (version 9.2, Cary, NC). Stroke characteristics, demographics, fall risk and physical functioning variables potentially influencing anticoagulation medication prescription were evaluated in bivariate tests using chi-square, Fisher’s exact, one way analysis of variance or the Wilcoxon rank-sum test.

To identify variables independently associated with anticoagulation, we constructed bivariate and multivariable logistic regression models estimated with generalized estimating equation methodology, which allowed us to incorporate clustering of patients within hospitals. The outcome of interest was anticoagulation medication prescription at discharge. Independent variables were those statistically significant at <0.05 in the bivariate tests and factors identified via a priori clinical judgment (Morse, FIM-motor, day 2 ambulation, NIHSS and discharge HAS-BLED ≥ 3). An event-per-variable ratio of 10:1 was maintained in multivariable models. The level of statistical significance was set at P < 0.05. No imputations were made for missing data.

Results

The baseline characteristics for the 334 subjects included in this analysis are presented in Table 1. The average age was 75 years (±10), 328 (98%) were male, and 239 (77%) were white.

At discharge, anticoagulation was prescribed for 235 (70%) of patients; 230 patients were prescribed warfarin, 28 patients were prescribed a non-warfarin anticoagulant medication, most commonly in combination with warfarin (e.g. 24 patients with low-molecular weight heparin and warfarin). A total of 98/334 (29%) patients were taking warfarin or a non-warfarin anticoagulant at hospital admission: 93/235 (40%) of patients discharged on any anticoagulant were taking an anticoagulant upon admission (Table 1).

Patients not prescribed anticoagulation had decreased function as per the FIM-motor (42 vs. 53, P = 0.003), had worse Morse-scores (59 vs. 52, P = 0.009) and were less likely to be ambulatory (day 2 of hospitalization 60 vs. 74%, P = 0.009 or discharge (69 vs. 80%, P = 0.020). Patients discharged without anticoagulation were at greater bleeding risk (HAS-BLED, 4 vs. 3, P < 0.001; Table 1).

We included NIHSS, FIM-motor, ambulation on day 2 of hospitalization, Morse-score and HAS-BLED in the multivariable model. Only FIM-motor scores (adjusted OR = 1.02, 95% CI 1.001–1.028, P = 0.03) and HAS-BLED scores (adjusted OR = 0.36, 95% CI 0.22–0.58), P < 0.001 were significantly associated with anticoagulation prescription at discharge. All independent variables were centered at their means (FIM = 51.8 and HAS-BLED = 3.45). Therefore, for the FIM-motor, there
was a 2% increase in the odds of being prescribed anticoagulation at discharge for every one unit of increase in FIM-motor >51.8. The HAS-BLED had the largest effect; for every unit increase above the mean of 3.45 there was a 64% reduction in the likelihood of receiving an anticoagulation prescription at discharge.

Discussion

The efficacy of anticoagulation medication use in prevention of stroke and stroke-related death has been well documented.28–33 However, due to concerns about intracranial hemorrhage and systemic bleeding, not all patients at risk for stroke with AF are prescribed anticoagulation medications.29 Clinicians likely consider post-stroke fall risk, motor functioning, stroke events, hypertension and other variables when evaluating the benefit-to-risk ratio for individual patients.

Overall, we found the majority (70%) of eligible patients with stroke and AF were prescribed anticoagulation at hospital discharge. This rate is somewhat lower than the anticoagulation rate observed in hospitals participating in the American Stroke Association Get with the Guidelines-Stroke program, where rates improved from 60% in 2003 to >90% by 2009.34 It is expected that the rate would be somewhat lower in our sample, as it was not restricted to hospitals participating in stroke quality improvement programs.

The 30% of eligible patients who were not prescribed an anticoagulant at discharge had worse FIM-motor scores, worse Morse scores and were less likely to be ambulatory on day 2 of the hospitalization or at discharge. Thus, patient physical functioning may be playing a key role in

Table 1 Descriptive statistics for patients with AF and Morse score by anticoagulation status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=334)</th>
<th>No anticoagulation at discharge (n=99)</th>
<th>Anticoagulation at discharge (n=235)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, in years (mean±SD)</td>
<td>75±10</td>
<td>75±10</td>
<td>74±10</td>
<td>0.4402</td>
</tr>
<tr>
<td>Sex, male</td>
<td>328 (98%)</td>
<td>97 (98%)</td>
<td>231 (98%)</td>
<td>0.9999</td>
</tr>
<tr>
<td>White race/ethnicity</td>
<td>239 (77%)</td>
<td>67 (68%)</td>
<td>172 (73%)</td>
<td>0.3076</td>
</tr>
<tr>
<td>NIHSS stroke severity</td>
<td>5±6</td>
<td>5±7</td>
<td>4±6</td>
<td>0.0670</td>
</tr>
<tr>
<td>FIM motor (last inpatient assessment)</td>
<td>50±27</td>
<td>42±26</td>
<td>53±26</td>
<td>0.0027</td>
</tr>
<tr>
<td>Charlson comorbidity score</td>
<td>2±2</td>
<td>1±2</td>
<td>1±1</td>
<td>0.7144</td>
</tr>
<tr>
<td>Comorbidities, past history of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>334 (100%)</td>
<td>99 (100%)</td>
<td>235 (100%)</td>
<td>0.2703</td>
</tr>
<tr>
<td>Hypertension</td>
<td>286 (86%)</td>
<td>88 (89%)</td>
<td>198 (84%)</td>
<td>0.4314</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>122 (36%)</td>
<td>33 (33%)</td>
<td>89 (38%)</td>
<td>0.9418</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>107 (32%)</td>
<td>32 (32%)</td>
<td>75 (32%)</td>
<td>0.7512</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>78 (23%)</td>
<td>22 (22%)</td>
<td>56 (24%)</td>
<td>0.4109</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>46 (14%)</td>
<td>16 (16%)</td>
<td>30 (13%)</td>
<td>0.6246</td>
</tr>
<tr>
<td>Transient ischemic attack</td>
<td>33 (10%)</td>
<td>11 (11%)</td>
<td>22 (9%)</td>
<td>0.4904</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>10 (3%)</td>
<td>4 (4%)</td>
<td>6 (2%)</td>
<td>0.1849</td>
</tr>
<tr>
<td>CEA/Stent procedure</td>
<td>10 (3%)</td>
<td>2 (2%)</td>
<td>8 (3%)</td>
<td>0.7292</td>
</tr>
<tr>
<td>DVT/PE</td>
<td>6 (2%)</td>
<td>0 (0%)</td>
<td>6 (3%)</td>
<td>0.4387</td>
</tr>
<tr>
<td>CHADS2 score at D/C (Mean±SD)</td>
<td>4±1</td>
<td>4±1</td>
<td>4±1</td>
<td><0.0001</td>
</tr>
<tr>
<td>HAS-BLED score at D/C (Mean±SD)</td>
<td>3±1</td>
<td>4±1</td>
<td>3±1</td>
<td>0.0093</td>
</tr>
<tr>
<td>Morse Falls score</td>
<td>54±25</td>
<td>59±24</td>
<td>52±25</td>
<td>1.0624</td>
</tr>
<tr>
<td>Discharge disposition to home</td>
<td>190 (57%)</td>
<td>50 (50%)</td>
<td>140 (60%)</td>
<td>0.2227</td>
</tr>
<tr>
<td>Preadmission independent ambulance</td>
<td>311 (93%)</td>
<td>90 (92%)</td>
<td>221 (95%)</td>
<td>0.0084</td>
</tr>
<tr>
<td>Hospital day 2 independent ambulance</td>
<td>227 (68%)</td>
<td>56 (60%)</td>
<td>171 (74%)</td>
<td>0.0200</td>
</tr>
<tr>
<td>Discharge independent ambulance</td>
<td>257 (77%)</td>
<td>68 (69%)</td>
<td>189 (80%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Admission antithrombotic use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any antithrombotic</td>
<td>98 (29%)</td>
<td>5 (5%)</td>
<td>93 (40%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-Warfarin</td>
<td>1 (0.3%)</td>
<td>0</td>
<td>1 (0.43%)</td>
<td>0.7045</td>
</tr>
<tr>
<td>Warfarin</td>
<td>98 (29%)</td>
<td>5 (5%)</td>
<td>93 (40%)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

NIHSS, NIH stroke scale; FIM, functional independence measure; DVT/PE, deep vein thrombosis/pulmonary embolism; CHADS2, Congestive heart failure, Hypertension, Age>75, Diabetes, and Stroke or TIA; HAS-BLED, Hypertension, Abnormal renal and liver function, Stroke, Bleeding, Labile INRs, Elderly age over 65 and Drugs or alcohol.
Importantly, 70% of this study sample was receiving appropriate anticoagulation. The other 30% did not receive anticoagulation; however, it may have been appropriate for these individuals to not receive anticoagulation, but there is a lack of documentation regarding the decision making. Our data does not include the actual documented contraindication, only ‘yes or no’, whether or not a contraindication was documented. It is unknown whether the contraindication would or would not be appropriate to withhold anticoagulation, thus the risk-to-benefit ratio of anticoagulation cannot be assessed. Besides, an important future area of quality improvement work should target the documentation of clinical decision making relevant to anticoagulation.

Our results indicate that only FIM-motor scores and the discharge HAS-BLED score were independent predictors of anticoagulation at post-stroke discharge. We hypothesized that fall risk would be predictive of anticoagulation prescription post-stroke, but our results did not support this hypothesis, at least independently. Our bivariate results demonstrated a significant difference in Morse scores between those with and those without anticoagulation prescription; however, the Morse was not maintained in the regression model. Additionally, it is of interest that stroke severity did not appear to influence anticoagulation decision making in these patients, even though stroke risk is a primary indicator for anticoagulation.\(^5\)

The FIM-motor score was maintained in the model. Perhaps this is because the FIM-motor score encompasses motor disability, including transfers, stairs and locomotion, and thus fall risk is embedded. Similarly, although the NIHSS (a measure of stroke severity) was entered into the multivariable analysis, it was not retained in the final model; we hypothesize that the FIM-motor component accounted for disability related to neurological symptoms. Therefore, while it seems that management of AF may improve functional recovery,\(^3\) physicians may be wary of prescribing or managing anticoagulation for someone with decreased motor ability.

Interestingly, the HAS-BLED was maintained in the regression analyses, indicating bleeding risk is a predictor of anticoagulation for people with stroke and AF. The CHADS\(_2\) was likely not different between groups because all of the patients scored at least a 2 due to the stroke event for which they were admitted to the hospital. Those who did not receive anticoagulation had an average of a 4 on the HAS-BLED; as stated above, a score of ≥3 indicates a high risk for bleeding and such patients are not recommended for receipt of anticoagulation therapy.

Table 2

<table>
<thead>
<tr>
<th>Predictors of anticoagulation use at discharge, bivariate and multivariable odds ratios and 95% confidence intervals from logistic models with within hospital adjustment</th>
<th>Bivariate results</th>
<th>Multivariable results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate (SE)</td>
<td>P-value</td>
<td>Unadjusted odds ratios</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.739 (0.393)</td>
<td>0.035</td>
</tr>
<tr>
<td>NIHSS</td>
<td>0.006 (0.003)</td>
<td><0.0001</td>
</tr>
<tr>
<td>FIM-motor</td>
<td>0.017 (0.005)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HAS-BLED score</td>
<td>0.004 (0.001)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Morse Falls score</td>
<td>0.001 (0.001)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hospital day 2 independent ambulation</td>
<td>0.675 (0.256)</td>
<td>0.0085</td>
</tr>
</tbody>
</table>

NIHSS: NIH Stroke Scale; FIM: Functional Independence Measure; DVT/PE, deep vein thrombosis/pulmonary embolism; CHADS\(_2\), Congestive heart failure, Hypertension, Age > 75, Diabetes, and TIA; HAS-BLED, Hypertension, Abnormal renal and liver function, Stroke, Bleeding, Labe INKS, Elderly age over 65, and Drugs or alcohol.
Our findings regarding the HAS-BLED are interesting when couched in a review of pertinent literature and AF guidelines. The HAS-BLED was recently found to better predict clinically relevant bleeding in people with AF when compared with two other assessments; however, all three assessments only performed modestly in predicting bleeding risk. Additionally, the guidelines distributed by the American College of Chest Physicians do not endorse the use of the HAS-BLED to assist in anticoagulation decision making. Perhaps our finding that the HAS-BLED score was maintained in the predictive model is attributable to this being a study population including people with AF and stroke, the mentioned guidelines include people with AF, not necessarily with stroke. Perhaps an assessment of elevated bleeding risk explains why anticoagulation was not prescribed in this group of patients; however, no documentation about such a bleeding risk assessment was present in the inpatient medical record. Given the robust literature supporting the use of anticoagulation among the post-stroke population with AF, it is necessary to document reasons for not prescribing anticoagulation medications at the time of hospital discharge.

Limitations

Limitations to this study include that all patients were Veterans (mostly men) cared for in VAMCs across the country; however, this does help us understand care within the single largest healthcare organization in USA. Given that VHA uses an electronic medical record system but one that does not generally include decision support for AF patients, these results may not be generalizable to systems without electronic medical records or to settings with documentation reminders (or other decision support) related to anticoagulation decision making or AF management. Finally, the VHA formula during the study period did not include any of the new anticoagulant medications, and therefore, these results pertain mainly to the use of warfarin.

Conclusion

These data suggest that decisions regarding anticoagulation for Veterans with stroke and AF appear to be made based on Veteran functional disability and bleeding risk. Thus, it is likely that some patients are receiving the appropriate care but fail the anticoagulation measure due to lack of documentation. Clinicians appear to be considering both bleeding risk and motor functioning when making anticoagulation decisions. Clinicians should strive to ensure that medical record documentation specifies reasons and clinical decision making for non-prescription of anticoagulation for post-stroke patients with AF whom they deem to be poor candidates for anticoagulation.

Funding

This work was supported by Department of Veterans Affairs, Veterans Health Administration, Health Services Research, and Development Service Quality Enhancement Research Initiative (RRP 09-184). The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs. Dr A.A.S. was supported by a Career Development Award from the Department of Veteran Affairs Rehabilitation Research & Development Service (VA RR&D CDA D6174W).

Conflicting of interest: None declared.

References

