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A.1 Discounting: The Role of Risk and Horizon

How should policymakers decide whether a particular investment in climate change

abatement is worth pursuing? A common approach is to conduct a cost-benefit analysis

to determine the societal net present value (NPV) of an investment project that is costly

today and provides a stream of potentially uncertain future benefits (cash flows), with

positive NPVs indicating socially beneficial projects. Discount rates play a central role in

determining NPVs, since even small changes in discount rates can dramatically alter the

NPVs of investments with long horizons (see, e.g., Arrow et al., 2013; Dietz, Gollier and

Kessler, 2015; Dreze and Stern, 1987; Moyer et al., 2014).

In this section, we review the basic theoretical concepts for our empirical and struc-

tural analysis in Section 2. Section A.1.1 describes how the appropriate rate for discount-

ing a particular cash flow depends on both the riskiness and the maturity of that cash flow.

Section A.1.2 highlights what this implies for learning about the appropriate discount

rates for climate change policies from observable assets that pay cash flows with different

riskiness and maturity. The main body of the paper uses insights from the term structure

of discount rates for one particular asset, real estate, to guide the choice of appropriate

discount rates for investments in climate change abatement.

To introduce our basic notation, let us represent an investment at time t as a claim to

a stream of future benefits (cash flows), Dt+k, k = 1, 2..., n, where n is the final maturity

of the cash flows. For example, an investment to avoid one ton of CO2 emissions today

provides benefits in terms of mitigated climate change in each future period for hundreds

of years. Each of these benefits, Dt+k, is stochastic and depends on the state of the world

at time t + k. For example, the future benefits of reducing CO2 emissions today could

depend on how much the economy grows in the future. We denote the state of the

world at time t + k as ωt+k ∈ Ωt+k and stress the dependence of benefits on its stochastic

realization with the notation Dt+k(ωt+k). The set Ωt+k includes all possible states of the

world at time t + k, which can differ along many dimensions, including the health of
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the aggregate economy and the degree of environmental damage. In what follows, we

will sometimes refer to general assets with maturity n that could pay cash flows such as

dividends or rents at any point in time up to their maturity; these will simply be referred

to with superscript n. A subset of these assets is the set of claims to a single cash flow at

a specific point in time, maturity n; we will refer to these with superscript (n).

A.1.1 The Value of a Single Cash Flow Investment

We begin our analysis by studying the value of an investment that pays only one cash

flow, at a specific point in time: t+n. This cash flow is not predetermined: it might be

different in different states of the world, ωt+n ∈ Ωt+n. We denote the present value of the

claim to this benefit as P
(n)
t . A classic tenet of asset pricing is that, under the relatively

mild assumptions of no arbitrage and the law of one price, P
(n)
t can be expressed as

the weighted expected value of that cash flow across scenarios ωt+n, where a benefit

paid in each scenario is weighted by the importance investors assign to benefits in that

state (see Hansen and Richard (1987), and Cochrane (2005) for a textbook treatment). Let

Mt,t+n(ωt+n) > 0 denote the value that investors attach at time t to benefits in state ωt+n.

An asset is considered more risky if it pays off primarily in states of the world in which

investors value that payoff less. If investors value benefits paid out earlier more than

benefits paid out later, the weighting Mt,t+n will also adjust for this time discounting. We

can then write the value of an investment that yields Dt+n as:

P
(n)
t = ∑

ωt+n∈Ωt+n

Mt,t+n(ωt+n)Dt+n(ωt+n)πt,t+n(ωt+n) = Et [Mt,t+nDt+n] , (A.1)

where πt,t+n(ωt+n) is the conditional probability of state ωt+n. The object Mt,t+n is called

the stochastic discount factor (SDF). In economic terms, the SDF reflects the marginal utility

of a payoff in different states of the world. The value of the asset thus reflects both the

physical properties of the asset (when and how much it pays in each state ωt+n) and the

preferences of investors (how much they value payoffs in each scenario ωt+n).

An equivalent representation of P
(n)
t , which is more prevalent in policy analysis, is

in terms of discount rates. The time and risk adjustments are then expressed using a per-

period discount rate rn
t :

P
(n)
t = Et [Mt,t+nDt+n] =

Et [Dt+n]

(1 + rn
t )

n
. (A.2)

Put differently, we can think of prices as the expected value of the cash flow discounted at
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a per-period discount rate rn
t . The appropriate discount rate will differ across investments

depending on which states of the world an investment pays benefits in, and the relative

valuation of benefits across states of the world: more risky investments are valued less,

and thus discounted at higher per-period discount rates.

A.1.2 The Importance of Horizon-Specific Risk Adjustments

We now consider a multi-period-payoff investment project that pays stochastic benefits

at different points in time up to maturity n. Any such asset can be thought of as the

combination of many single cash flow assets, each paying at specific points in time, t +

1, t + 2, ..., t + n. Therefore, the value of a multi-period-payoff investment project is the

sum of the values of the individual single-period-payoff projects:

Pn
t = P

(1)
t + P

(2)
t + ... + P

(n)
t

Since the two representations discussed above for the one-period case also apply to the

multi-period case, the value Pn
t can be written as:

Pn
t = Et [Mt,t+1Dt+1 + Mt,t+2Dt+2 + ... + Mt,t+nDt+n] (A.3)

=
Et [Dt+1]

1 + r1
t

+
Et [Dt+2]

(1 + r2
t )

2
+ ... +

Et [Dt+n]

(1 + rn
t )

n
. (A.4)

These two representations differ from the valuation formula that is often applied in cost-

benefit analyses, which discounts each cash flow at the same per-period discount rate rt:

Pn
t =

Et [Dt+1]

1 + rt
+

Et [Dt+2]

(1 + rt)2
+ ... +

Et [Dt+n]

(1 + rt)n
. (A.5)

Representations A.3 and A.4 are always correct and equivalent; the last one is only correct

if the discount rate rt is chosen to match the risk and maturity of a particular asset.

Therefore, rt can only be applied to value the benefits of a project with exactly the same

risk characteristics and exactly the same maturity as the asset from which rt was derived

in the first place. For the purpose of discounting the benefits of a project with different

characteristics, the full term structure of discount rates r1
t , r2

t , ..., rn
t needs to be known and

appropriately adjusted for differences in risk characteristics. We highlight the importance

of this by considering the valuation of three different investment projects below: a project

with the same risk and payoff horizon as those of an observed traded asset (whose aver-

age per-period discount rate is rt); a project with the same risk properties but a different
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payoff horizon; and a project with different risk properties but the same payoff horizon.

Case 1: Same Risk, Same Horizon. Consider first an observable asset with maturity

n and stochastic cash flows Dt+1, Dt+2,..., Dt+n (if the asset has infinite maturity as in

the case of the stock market, then n = ∞). Imagine we are able to observe the average

discount rate of this asset, rt. Put differently, given an asset with maturity n and some risk

profile, rt is defined as the constant discount rate consistent with the asset’s price. Now

consider the case in which an investment in climate change abatement pays cash flows

D̃t+1, ..., D̃t+n that are different from the cash flows of the observed asset, but have the

same risk characteristics (i.e., the same dependence on the state of the world ωt+n). This

is the only case in which cash flows from climate change abatement can be discounted at

the same average rate as those from the observable asset. The value of the climate change

investment, Cn
t , will be:

Cn
t =

Et

[

D̃t+1

]

1 + rt
+

Et

[

D̃t+2

]

(1 + rt)2
+ ... +

Et

[

D̃t+n

]

(1 + rt)n
.

Case 2: Same Risk, Different Horizon. Since the risk preferences captured by Mt,t+k

potentially depend on the horizon, using average discount rates from one asset to dis-

count cash flows from another investment is no longer valid if those cash flows material-

ize over different horizons. Take our example from above and assume that the asset’s cash

flows have the same riskiness as the cash flows from the investment in climate change

abatement at each horizon. Assume further that the observable asset yields benefits in

every period between time t and time t + n, while the investment in climate change

abatement only yields benefits after maturity n > 1. Since the riskiness of the cash

flows of both investments is the same, one may be tempted to use the observed average

discount rate rt from the observable asset to discount climate change project cash flows.

This turns out to be incorrect, however. The correct price is obtained as below:

C
(n,n)
t =

Et

[

D̃t+n

]

(1 + rn
t )

n
+

Et

[

D̃t+n+1

]

(1 + rn+1
t )n+1

+ ... +
Et

[

D̃t+n

]

(1 + rn
t )

n
,

where each dividend is discounted at the horizon-specific discount rate, rn
t , rn+1

t , ..., rn
t .

Since rt was obtained as the discount rate that applies to the observable asset, it reflects

an average of all the horizon-specific discount rates r1
t , r2

t , ..., rn
t , including the ones for

maturities up to n− 1. Since the climate change project does not accrue benefits at those

horizons, its value should not depend on the discount rates between t + 1 and n− 1.
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To see this more clearly, suppose that investors are only worried about the states

of the world in which the relatively near cash flows are being paid out (horizons 1 to

n− 1), while they are not worried about risks for horizons higher than n: for long matu-

rities, investors only care about the expected payout from the asset, not the state of the

world in which it is paid out. They will discount the short-term cash flows at high rates,

r1
t , r2

t , ..., rn−1
t , but the longer-maturity cash flows at lower rates, rn

t , rn+1
t , ..., rn

t , reflecting

their risk-neutrality at those horizons. The term structure of discount rates for this par-

ticular asset is thus downward-sloping. The claim to all cash flows may have a relatively

high implied average discount rate, in particular if many of the cash flows accrue before

n. At the same time, if the benefits from a climate change investment had the same risk

properties, but only accrued after n, the correct present value for such an investment

should only depend on the low discount rates rn
t , rn+1

t , ..., rn
t . It would thus be higher than

under the relatively high average discount rate rt.

Case 3: Different Risk, Same Horizon. Beyond the timing of cash flows, a second po-

tentially important difference between an observed asset’s discount rates and those that

apply to some investment project is the relative riskiness of the payoffs at the same horizon.

As outlined before, riskiness here refers to whether an asset mostly pays in states of the

world ωt+k where payments are least valuable for the investor. Consider our example

from above again. Assume that the asset as well as the climate change investment project

only pay a single cash flow in period t + n. Further assume that the observed asset’s cash

flow is riskier than the investment’s cash flow: for example, equities generally pay off in

states of the world where the economy is doing well, while investments that mitigate the

impact of climate disasters would pay off in states of the world where the economy is not

doing well. The discount rate implied by the observable price of the asset will then be

different from the appropriate discount rate for the investment project.

For concreteness, assume that there are only two equally likely states of the world – a

good one (ωG
t+n) and a bad one (ωB

t+n). Assume that marginal utility in the good state of

the world is lower than marginal utility in the bad state of the world, and assume that the

observed asset pays out in the good state of the world only, while the investment project

only pays out in the bad state of the world; both pay out the same amount if they pay

out. This implies that Et [Mt,t+nDt+n] < Et

[

Mt,t+nD̃t+n

]

. It then follows from equation

A.2 that the investment project should be discounted at a lower rate than the asset.
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A.2 Estimating the Climate Risk Exposure of Real Estate

In this section, we provide additional information related to our analysis of the climate-

risk exposure of real estate in Section 1.1. We first provide additional information on the

construction of the “Climate Attention Index” before discussing the hedonic regressions

in more detail.

A.2.1 Construction of Climate Attention Index

To construct the Climate Attention Index, we conduct a textual analysis of the descrip-

tions of properties in our for-sale listings data. First, we convert every word to lowercase

letters before using the stopwords function of the nltk Python package to remove prepo-

sitions, articles, pronouns, and punctuation marks. We flag the listing of a property as

“one” if it contains at least one of the climate-related words or bigrams from Table A.1

and as “zero” if none of them is used. More specifically, for single words, we simply

check if any one of them matches with the textual description of the listing. For bigrams,

we check whether the combination of two words in different orders matches with the

description. For instance, for the bigram sea level, we check if either sea level or level sea

appears in the sequence of words of the description as level of sea will be stripped of the

preposition due to the textual analysis function. We also check whether the names of the

deadliest and costliest hurricanes since 2000 appear in the description.

Appendix Tables A.2, A.3, A.4, and A.5 list the most common words indicating at-

tention to climate change in each state. In Florida, the most common term is “hurricane”,

occurring in about 3.3% of all property listings, while in the other states the most common

term is “storm.” We next present a number of examples of property listings that would

be flagged using our algorithm.

Example 1: Diamond in the Rough on water with pier and dock! Owner holds

letter of expemption from FEMA, stating high elevation, flood insurance

may not be required, minutes to area beaches, Close to Jacksonville and Wilm-

ington.

Example 2: Adorable home in Archdale situated on 1.43 acres!! Features in-

clude vinyl replacement windows, large bonus room perfect for extra bed-

room, den or game room, fenced backyard, large outbuilding and two drive-

ways for extra parking room. Creek is in 500 year flood plain, left side of lot

is in 100 year flood plain. House is not in a flood zone to our knowledge.

Flood insurance has never been required.
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Example 3: SUPERIOR CONSTRUCTION, UPGRADES GALORE & STUNNING

BAY VIEWS SET THIS HOME A PART FROM THE OTHERS! You’ll have

a hard time finding a higher quality constructed home in Destin. In addi-

tion, because of its construction and location on high & dry ground (17-20

FT ABOVE SEA LEVEL), IT’S HOMEOWNERS INSURANCE & FLOOD

INSURANCE COSTS ARE SOME OF THE LOWEST IN THE AREA! AL-

THOUGH FLOOD INSURANCE IS NOT REQUIRED (HOME IS IN ZONE

X), THIS HOME IS NOT IN THE COBRA ZONE AND IS ONE OF THE

FEW BAY FRONT HOMES IN DESTIN ELIGIBLE FOR $348 PER YEAR

FEDERAL FLOOD INSURANCE. ALL OF THE HOMES IN KELLY PLAN-

TATION, REGATTA BAY, EMERALD LAKES, EMERALD BAY AND MOST

OF DESTINY ARE IN THE COASTAL BARRIER ZONE AND ARE NOT

ELIGIBLE FOR FEDERAL FLOOD INSURANCE. This is a huge benefit

because private flood insurance for homes in those neighborhoods can cost

between $8,000 and $20,000 per year! This home’s Insulated Concrete Form

(ICF) construction provides superior storm protection, is resistant to mold &

termites, can reduce this home’s heating & cooling bills up to 50%, & delivers

LOW homeowners insurance.

Example 4: Looking for a family home that’s ready to move in and only 6 years

old? This 4 bedroom 2 1/2 bath plus office/hobby room is in a great neighbor-

hood in the award-winning Carolina Forest school district and is priced to sell!

A new home in 2011, it has a private office area away from the upstairs bed-

rooms, a fireplace, a screened porch, and even a low HOA with a community

pool! Loads of storage space,a 2 car garage, an upstairs laundry room, and an

open living area with lots of natural light add to the value of this beauty. All

the items in the garage convey- such as lawn mower, freezer, safe, hurricane

coverings for windows, edger, etc. Not in a flood zone, it’s high and dry!

Close to Coastal University, Carolina Forest, Tanger outlets,and Hwy 31. A

quick back route available using Hwy 544 when Hwy 501 is too busy. Only 15

minutes to the beach. Not in a flood zone. Great for a family residence, or a

good investment for long term rentals. Come and see!

Example 5: Now selling just 6 lots left EMERALD COAST Yacht Club; FLOOD

ZONE X: This beautiful neighborhood faces West for the most spectacular

sunsets; 21 feet above sea level; This is a rare find in the Panhandle WOW! No
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Flood insurance this will save you $5-$6000 annually. Underground utilities

on site; All permits for dock had been received however some have expired

for dock and 14’x30’ Boat Slips. All Neighborhood HOA Documentation will

convey with sale. Permits and plans attached. Should HOA members decide

to proceed with Dock construction, all funding for permit resubmittals and

construction must be agreed to and paid for by HOA members.

Importantly, most of these property listings include descriptions that highlight that

a specific property is less exposed to climate risk. We believe that this is sensible: if you

were selling a property with particular exposure to climate risk, for example because it

sits in a flood zone, you would not highlight this negative feature in a property listing.

However, if you are selling a house that is not exposed to climate risk, this is something

worth highlighting in a property listing, in particular in areas and at times when potential

buyers pay more attention to these risks.

After identifying all listings that suggest particular attention is paid to climate risks,

the Climate Attention Index is then constructed as the share of listings with these climate-

related texts at the ZIP-code-quarter and ZIP-code-year level. To explore how this Climate

Attention Index varies across regions, Figures A.1, A.2, and A.3 show heatmaps that

are similar as that in Panel A of Figure 2. As before, the Climate Attention Index is

particularly high in those ZIP-codes near the coast line.

A.2.2 Coefficients on Control Variables in Hedonic Regression

In our main hedonic regression specification, equation 1, we control for a large number of

property characteristics that could affect the value of the property. While the coefficients

on these characteristics are not of primary interest for our work, in this section we discuss

the relationship between each control variable and transaction prices (Figure A.4) and

rental prices (Figure A.5), controlling for the other hedonic characteristics.

We see a consistently increasing positive impact of a larger finished square footage, lot

size, and number of bathrooms on the transaction price and rental price. The effect of the

number of bedrooms on transaction values and rental values is an inverted U-shape. This

is consistent with our empirical understanding of the real estate market in which, at some

point, home buyers prefer having a larger common area to having more bedrooms for

the same property size: for most households, having six tiny bedrooms and a small living

room is less desirable than having four larger bedrooms and a larger living room. We also

observe an increasing negative effect of older remodel ages on prices. For property age,

we see an initial negative impact as age increases, but after a certain point property age
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impacts prices positively. We find it reasonable that people prefer a mid-century house

to a house built in the 1990s (especially holding the remodeling age fixed) that is neither

new nor old enough for its age to be appealing.

Overall, these relationships are highly consistent with those estimated in the literature

(see, e.g., Stroebel, 2016), which highlights the quality of our transaction and property

characteristics data.

A.3 Details on the Riskiness of Housing

A.3.1 The Riskiness of Housing – Details on Main Analyses

This section provides the details underlying the analysis carried out in Section 1.3. Section

A.3.2 will provide additional evidence for the riskiness of housing.

Table A.7 reports the availability of house price data and the associated financial crises

and rare disasters. The first column in Table A.7 shows the time coverage of house price

indices for each country. For some countries, we can go far back in time; for example,

we sourced data as far back as 1819 for Norway, 1890 for the U.S., and 1840 for France.

The second and third columns report the dates of any banking crises or rare consumption

disasters that occur in each country over the time period provided in the first column.

Banking crises dates for all countries, except Singapore, Belgium, Finland, New Zealand,

South Korea, and South Africa, are from Schularick and Taylor (2012). Banking crises

dates for the countries not covered by Schularick and Taylor (2012) are from Reinhart and

Rogoff (2009).1 Rare disaster dates in the last column indicate the year of the trough in

consumption during a consumption disaster as reported by Barro and Ursua (2008).

For each country, we obtained the longest continuous and high-quality time series of

house price data available. To make the data comparable across countries and time peri-

ods, we focus on real house prices at an annual frequency. Finally, to increase historical

comparability across time within each time series, we report each index for the unit of

observation, for instance a city, for which the longest possible high quality time series

is available. For example, since a house price index for France is only available since

1936, but a similar index is available for Paris since 1840, we focus on the Paris index for

the entire history from 1840-2012. We stress, however, that for each index and country

we have carried out an extensive comparison with alternative indices, in particular with

indices available for the most recent time period, in order to ensure that we are observing

1For this second set of countries and dates, we have also consulted Bordo et al. (2001), who confirm all
dates in Reinhart and Rogoff (2009), except 1985 for South Korea and 1989 for South Africa.
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consistent patterns in the data. In the following, we detail the sources for each of the 20

countries in our sample:

• Australia: Real annual house price indices are from Stapledon (2012). For our

analysis, we use the arithmetic average of the indices (rebased such that 1880 =

100) for Melbourne and Sydney.

• Belgium, Canada, Denmark, Finland, Germany, Japan, Italy, New Zealand, South

Africa, South Korea, and Spain: Real annual house price indices are from the

Federal Reserve Bank of Dallas.2 The sources and methodology are described in

Mack and Martínez-García (2011).

• France: Nominal annual house price index and CPI are available from the Conseil

Général de l’Environnement et du Développement Durable (CGEDD).3 We obtain

the real house price index by deflating the nominal index using the CPI. For our

analysis, we use the longer time series available for the Paris house price index.

• Netherlands: Nominal annual house price index for Amsterdam and CPI for the

Netherlands are available from Eichholtz (1997) and Ambrose, Eichholtz, and Lin-

denthal (2013).4 We obtain the real house price index by deflating the nominal index

using the CPI.

• Norway: Nominal annual house price index and CPI are from the Norges Bank.5

We obtain the real house price index by deflating the nominal index using the CPI.

• Singapore: Nominal annual house price index for the whole island is from the Ur-

ban Redevelopment Authority (http://www.ura.gov.sg). CPI is from Statistics

Singapore. We obtain the real house price index by deflating the nominal index

using the CPI.

• Sweden: Nominal house price index for one-or-two-dwelling buildings and CPI

are from Statistics Sweden. We obtain the real house price index by deflating the

nominal index by CPI.

2The data are available at: http://www.dallasfed.org/institute/houseprice/, last accessed
February 2018.

3http://www.cgedd.developpement-durable.gouv.fr/les-missions-du-cgedd-

r206.html, last accessed February 2014.
4Part of the data are available on Eicholtz’ website at: http://www.maastrichtuniversity.nl/

web/Main/Sitewide/Content/EichholtzPiet.htm, last accessed February 2014.
5http://www.norges-bank.no/en/price-stability/historical-monetary-

statistics/, last accessed February 2014.
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• Switzerland: Nominal house price index for Switzerland is available from Con-

stantinescu and Francke (2013). Among the various indices the authors estimate,

we focus on the local linear trend (LLT) index. The data are available for the period

1937-2007. We update the index for the period 2007-2012 by using the percentage

growth of the house price index for Switzerland available from the Dallas Fed.6

The CPI index for Switzerland is from the Office fédéral de la statistique (OFS). We

obtain the real house price index by deflating the nominal index using the CPI.

• U.K.: Annual nominal house price data are from the Nationwide House Price Index.

We divide the nominal index by the U.K. Office of National Statistics “long term

indicator of prices of consumer goods and services” to obtain the real house price

index. The Nationwide index has a missing value for the year 2005, for that year we

impute the value based on the percentage change in value of the house price index

produced by the England and Wales Land Registry.

• U.S.: Real annual house price data are originally from Shiller (2000). Updated data

are available on the author’s website.7

For all countries, the real annual consumption data are from Barro and Ursua (2008) and

available on the authors’ website.8

Figure 3 is produced by combining the time series of house prices and consumption

described in the previous subsection with the dates for banking crises and rare disasters

in Table A.7. When taking averages across countries in Panel A of Figure 3 for the 6 year

windows around a banking crisis, the following countries have missing observations for

the house price series: France data are unavailable for the year 2011 following the 2008

crisis, Netherlands data are unavailable for the years 2010 and 2011 following the 2008

crisis, and South Africa data are unavailable for the year 1974 before the 1977 crises. In

these cases, the crises are still included in the sample but the average reported in the

figure excludes these missing country-year observations.9

A.3.2 The Riskiness of Housing – Additional Evidence

In this section, we provide additional details and evidence for the riskiness of real estate

to complement the analysis in Section 1.3.

6This source is described in the second bullet point above.
7Available at: http://aida.wss.yale.edu/~shiller/data.htm, last accessed February 2018.
8Available at: https://scholar.harvard.edu/barro/data_sets, last accessed February 2018.
9In unreported results, we have verified that the result is essentially unchanged if we exclude the 2008

crisis for France and the Netherlands and the 1975 crisis for South Africa from the data.
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Figure A.9 plots the growth rates of rents and personal consumption expenditures

(PCE) in the U.S. since 1929. In periods of falling PCE, in particular the Great Depres-

sion, rents also fell noticeably. The bottom panel shows a (weak) positive relationship

between the growth rates of rents and personal consumption expenditures. This suggests

that housing rents tend to increase when consumption increases and marginal utility of

consumption is low. Figure A.10 indicates that rents in London are positively correlated

with house prices in London, but more volatile.

A.4 Details on Average Returns to Residential Real Estate

This section describes the methodology and data used to compute average real returns

and rent growth for residential properties for the price-rent approach and for the balance-

sheet approach presented in Section 1.3.1.

A.4.1 Details on the Price-Rent Approach

United States. For the U.S., we calculate returns between 1953 and 2016. For consistency

with the balance-sheet approach, we use Q4-indices. We follow Favilukis, Ludvigson,

and Van Nieuwerburgh (2017) and use the house price index from Shiller (2000), which

combines data from two sources in its current version: the home purchase component

of the U.S. CPI from 1953 to 1975, and the S&P CoreLogic Case-Shiller Home Price Index

thereafter.10

For rent growth, we also follow Favilukis, Ludvigson, and Van Nieuwerburgh (2017)

and use the shelter index from the BLS (the component of CPI related to shelter, item

CUUR0000SAH1 from the Federal Reserve Bank of St. Louis). However, for the period

up until 1985, we substitute for the BLS shelter index with the adjusted rental index from

Crone, Nakamura and Voith (2010). We do not use the BLS shelter index up until 1985

for two reasons: First, as documented by Gordon and vanGoethem (2007) and Crone,

Nakamura and Voith (2010), there appears to be a significant downward bias in all rental

CPIs published by the BLS up until the mid-1980s, most likely due to a non-response bias

for units that were vacant or where tenants changed. Second, while we are interested in

housing as an unlevered asset, mortage interest rates directly affected BLS rental indices

until 1982 (see, e.g., Reed, 2014). For the same reasons, we use the CPI for All Urban

Consumers excluding shelter as our inflation measure before 1986 (item CUUR0000SA0L2),

and including shelter (item CPIAUCNS) thereafter. The downside of this substitution is

10http://www.econ.yale.edu/~shiller/data.htm, last accessed February 2018.
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that the rental index of Crone, Nakamura and Voith (2010) does not include (imputed)

owner-occupied rents, but at least since the BLS shelter index methodology has been

updated with regard to the treatment of mortgage interest in the mid-80s, the BLS shelter

index and the BLS rent index have tracked each other closely.

Unlike Favilukis, Ludvigson, and Van Nieuwerburgh (2017), we choose 2012 as a

baseline year for our rent-to-price ratio, which we estimate to be 10%; the choice of the

baseline year is motivated by the availability of high-quality data obtained from real

estate portal Trulia that allows us to directly estimate rent-to-price ratios for the U.S.

Figure A.6 shows the distribution of rent-to-price ratios across the 100 largest MSAs

provided by Trulia and Figure A.7 suggests that these rent-to-price ratios are close to

their long-run average.11

In robustness checks, we use several complementary time series. First, our benchmark

rent-to-price ratio from Trulia might include rental properties where some utilities are

covered by the monthly rent. Using data from the balance-sheet approach (described

in detail in Section A.4.2), the “utilities yield” for water and gas for all residential real

estate was 0.6% in 2012. In a robustness check, we therefore reduce our gross rental yield

estimate by this amount. Alternatively, we use the 2012 gross rent-to-price ratio implied

by our preferred balance sheet approach specification that adjusts for revaluation-implied

housing stock growth as discussed in Section A.4.2. This estimate is slightly lower than

our Trulia estimate, at 8.6%.

Second, we use the FHFA house price index (formerly OFHEO house price index,

item USSTHPI from the Federal Reserve Bank of St. Louis) for the period since 1975. The

FHFA house price index differs on four main dimensions from the Case-Shiller House

Price Index: While the latter is only based on purchase prices, the former also includes re-

finance appraisals. While the Case-Shiller HPI relies on transaction information obtained

from county assessor and recorder offices, the FHFA HPI relies on data from conforming

mortgages provided by Fannie Mae and Freddie Mac. Moreover, while the Case-Shiller

HPI is value-weighted, the FHFA HPI is equal-weighted. Finally, the FHFA’s geograhic

coverage includes all U.S. states, while the Case-Shiller HPI does not.12

In a third robustness check, we use the BEA price index for personal consumption

expenditure on housing (NIPA Table Table 7.4.4. Line 1) in place of the BLS shelter index

11We thank Jed Kolko and Trulia for providing these data. Trulia observes a large set of both for-sale and
for-rent listings. The rent-to-price ratio is constructed using an MSA-level hedonic regression of ln(price)
on property attributes, ZIP-code fixed effects, and a dummy for whether the unit is for sale or for rent. The
rent-to-price ratio is constructed by taking the exponent of the coefficient on this dummy variable.

12For additional details, see https://www.fhfa.gov/Media/PublicAffairs/Pages/Housing-
Price-Index-Frequently-Asked-Questions.aspx#quest11, last accessed February 2018.
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for the years since 1985; for internal consistency, we use the BEA price index for personal

consumption expenditure to deflate nominal returns (NIPA Table 2.3.4. Line 1) instead

of the BLS CPI for this time period in this specification. While the BLS price indices

are the most widely known inflation measures, the Federal Reserve states its goal for

inflation in terms of the PCE price index. Both measures follow similar trends, but differ

along four key dimensions: First, CPI weights are based on a survey of what households

are buying, while PCE price index weights are based on surveys of what businesses are

selling. Second, the CPI only includes out-of-pocket expenditures, while the PCE price

index also includes expenditures indirectly paid for, e.g. insurance payments through

employer-provided medical insurance. Finally, the PCE price index reflects substitution

between goods when relative prices change, while the CPI does not.13

We assume a property tax impact of 0.67% for a representative household for the

price-rent approach. Property taxes in the U.S. are levied at the state level and, while

there is variation across states, are generally around 1% of house prices. Property taxes,

however, are deductible from federal income tax. We assume that the deductibility re-

flects a marginal U.S. federal income tax rate of 33%. The net impact is therefore (1 −

0.33) ∗ 0.01 = 0.67%.

United Kingdom. For the U.K., we calculate returns between 1988 and 2016.14 For

consistency with the balance-sheet approach, we use Q4-indices. We use the house price

index from the U.K. Land Registry (series K02000001) to compute price appreciation.

This new house price index has been introduced in 2016 in an effort to provide a “single

definitive House Price Index (HPI)” that replaces the previously and separately published

house price indices by the Land Registry and the Office of National Statistics (ONS).15

It addresses a number of limitations of the previous house price indices, namely: It

has increased coverage and is therefore more representative of the overall U.K. housing

market, it is less sensitive to extreme prices, and it is internally consistent and therefore

fully comparable across time.16

13For additional details, see https://www.clevelandfed.org/newsroom-and-events/

publications/economic-trends/2014-economic-trends/et-20140417-pce-and-cpi-

inflation-whats-the-difference.aspx, last accessed February 2018.
14The data provided by the ONS would allow us to include 1987 as well, but housing returns were

extraordinary high in that year – in fact the inclusion of this one year would increase our return estimates
by almost a full percentage point. We therefore decided to drop it from our sample.

15For more details, see https://www.ons.gov.uk/economy/inflationandpriceindices/

methodologies/developmentofasingleofficialhousepriceindex, last accessed February 2018.
16Overall, growth rates are mostly comparable with the two outdated house

price indices from the Land Registry and the ONS. For more details, see
https://www.ons.gov.uk/economy/inflationandpriceindices/articles/
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To compute rent growth, we combine three rental indices from the ONS: For the years

before 1996, we use the RPI Component Housing Rent (series DOBP). For the years between

1996 and 2005, we use the CPI Component Actual Rents for Housing (series D7CE). For the

years since 2005, the ONS has included owner-occupied housing into its CPI measures

and calls these enriched series CPIH. For this period, we combine the CPIH Component

Actual Rents for Housing (series L536) with the CPIH Component Owner Occupiers’ Costs for

Housing (series L5P5) following the methodology outlined by the ONS in its Consumer

Price Indices Technical Manual ONS (2014). In particular, we calculate weighted arithmetic

means using the relevant COICOP weights for the respective current year (series L5E5,

L5PA) at the monthly level, and average across quarters to get to quarterly indices.17 We

use the CPI for All Items for the period before 2005 (series D7BT) and the CPIH for All Items

for the period since 2005 (series L522) to adjust for inflation.

For the baseline rent-to-price ratio, we rely on estimates for matched properties that

are both sold and rented out within six months in London from Bracke (2015), who finds

a median rent-to-price ratio of 5% between 2006 and 2012. In our setting, this translates

into a rent-to-price ratio of 5.2% in 2012. Since properties in city centers tend to have

lower rent-to-price ratios on average, we consider this a conservative estimate for the

average U.K. housing stock. Nevertheless, it is close to the rent-to-price ratio of 5.3%

that we estimate using the balance-sheet approach for 2012. Since U.K. rents typically do

not cover any utilities (see Bracke, 2015), we do not correct gross rent-to-price ratios for

utilities.

Singapore. For Singapore, we calculate returns between 1990 and 2016. For consistency

with the U.S. and the U.K., we use Q4-indices. We obtain time series of price and rental

indices for the whole island from the Urban Redevelopment Authority (the government’s

official housing arm: ura.gov.sg). Both series are published by the Department of Statistics

Singapore (series M212261 and M212311). We obtain the CPI from the same source (series

M212191). To estimate the baseline rent-to-price ratio, we use data from for-sale and for-

rent listings provided by iProperty.com, Asia’s largest online property listing portal in

2012. We observe approximately 105,000 unique listings from 2012, about 46% of which

are for-rent listings. To estimate the rent-to-price ratio, we run the following regression,

which pools both types of listings. The methodology is similar to the one used to construct

explainingtheimpactofthenewukhousepriceindex/may2016, last accessed February 2018.
17COICOP stands for “Classification of Individual Consumption according to Purpose”; it is a reference

published by the U.N. Statistics Division and followed by the ONS that divides individual consumption
expenditures into standardized divisions and groups. Housing, Water, Electricity, Gas and Other Fuels is
Division (04), and Actual Rentals for Housing and Imputed Rentals for Housing are groups (04.1) and (04.2).
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rent-to-price ratios for the U.S. in Figure A.6:

ln (ListingPrice)i,t = α + βiForRenti + γControlsi,t + ǫi,t (A.6)

The dependent variable, ListingPrice, is equal to the list-price in “for-sale” listings, and

equal to the annual rent in “for-rent” listings. ForRenti is an indicator variable that is

equal to one if the listing is a for-rent listing. The results are reported in Table A.6. In

column 1, we control for postal code by quarter fixed effects. The estimated coefficient

on βi suggests a rent-to-price ratio of eβi = 4.5%. In columns 2–4, we also control for

other characteristics of the property, such as the property type, the number of bedrooms,

the number of bathrooms as well as the size, age, and floor of the building. In columns

3 and 4, we tighten fixed effects to the month by postal code level and the month by

postal code by number of bedrooms level respectively. In all specifications, the estimated

rent-to-price ratio for 2012 is 4.4% or 4.5%.

We calibrate the property tax impact to be 0.6%. Before 2003, Singapore levied a

10% annual tax on the estimated rental income of the property. A lower tax rate of 4%

applied to owner-occupied properties. Starting in 2011 for owner-occupiers and in 2014

for landlords, Singapore has introduced increasingly progressive tax schemes that start

at 0% and cap out at 16% for owner-occupiers, and start at 10% and cap out at 20% for

landlords since 2015. Even though homeownership rates are around 90% during our

sample period (numbers based on series M810401 - Resident Households By Tenancy as

published by Statistics Singapore on its website http://www.singstat.gov.sg), we

use the more conservative (higher) rate of 10% for rental properties as it has prevailed for

most of our sample period. The tax impact on returns is the tax rate times the average

rent-price ratio, estimated at around 6%. Hence, τ = 0.1 ∗ 0.06 = 0.6%.18

A.4.2 Details on the Balance-Sheet Approach

United States. For the U.S., we calculate returns between 1953 and 2016. We focus on

owner-occupied housing and tenant-occupied housing in the nonfinancial noncorporate

sector, the most representative sectors of the U.S. housing market (both sectors accounted

for more than 90% of the value of residential housing on average during our sample

period, and for roughly 95% towards the end of our sample period). Our data for the U.S.

come from two main sources, the Financial Accounts of the United States (FAUS) for housing

18For details, see https://www.iras.gov.sg/irashome/Property/Property-owners/

Working-out-your-taxes/Property-Tax-Rates-and-Sample-Calculations/, last accessed
February 2018.
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wealth (published by the Federal Reserve Board, FRB), and the National Income and Product

Accounts (NIPA) for rents (published by the Bureau of Economic Analysis, BEA). In total,

we calculate six objects: (1) the value of the housing stock, (2) net rents, (3) depreciation,

(4) maintenance and other intermediate inputs, (5) taxes, and (6) varying measures of

the physical housing stock. We add (3) and (4) to get a measure of depreciation gross of

maintenance. For each object, we describe in detail below how we perform the sectoral

match between NIPAs and FAUS to ensure that our rental yields are internally consistent.

The details are as follows:19

• Value of the Housing Stock: For the value of the housing stock, we use data ob-

tained from the FAUS. In particular, we sum Owner-Occupied Real Estate at Market

Value (FL155035013) and Residential Tenant-Occupied Real Estate at Market Value in

the Nonfinancial Noncorporate Business sector (FL115035023).

• Net Rents: To calculate net rents, we start from Mayerhauser and Reinsdorf (2006),

and sum Rental Income of Persons with Capital Consumption Adjustments of owner-

occupied housing (NIPA Table 7.12. Line 164) less mobile homes (NIPA Table 7.9.

Line 12) and of tenant-occupied housing in the nonfinancial noncorporate sector

with Proprietor’s Income with Inventory Valuation and Capital Consumption Adjustments

(NIPA Table 7.4.5. Line 20),20 where “with capital consumption adjustment” means

after depreciation. For rental income in the tenant-occupied nonfinancial noncor-

porate sector, we subtract rental income of persons with capital consumption ad-

justments for owner-occupiers and for nonprofits (NIPA Table 7.9. Line 14) from

all rental income of persons with capital consumption adjustments in the housing

sector (NIPA Table 7.4.5. Line 21).

Since we are interested in housing as an unlevered asset, we also add back mortgage

interest. For owner-occupied housing, we follow Piketty and Zucman (2014) and

use Monetary Interest Paid (NIPA Table 7.11. Line 16).21 For tenant-occupied nonfinan-

cial noncorporate housing, we compute monetary interest paid in two steps. First,

19Some time series that are used in a supportive function to derive key objects have missing data points
for the first few years in our sample. In those cases, we extrapolate back using a decadal trailing average of
yearly growth rates. All results are robust to setting these values to zero instead.

20(Nonfarm) proprietors are unincorporated (nonfarm) businesses that are included in the nonfinancial
noncorporate sector in the FAUS (for details, see Bond et al. (2007) and Bureau of Economic Analysis (2017),
Chapter 11).

21We effectively assume that the share of mobile homes corresponds to its share in owner-occupied
structure values based on FAUS data (FL155012013 for mobile homes and FL155012665 for all other owner-
occupied structures; the FAUS only publish structure values for mobile homes), and reduce the resulting
series accordingly. Mobile homes accounted for less than 3.5% of owner-occupied structure values over our
sample period and all results are robust to including mobile homes in our capital stock.
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note that the NIPA table for the housing sector lists Net Interest (NIPA Table 7.4.5.

Line 18) instead of monetary interest paid.22 We calculate net interest for tenant-

occupied housing as the difference between all net interest in the housing sector

(NIPA Table 7.4.5. Line 18) and net interest paid by owner-occupiers (NIPA Table 7.12.

Line 160). Second, to calculate monetary interest paid by tenant-occupied housing,

we assume that the percent difference between total interest and net interest is

the same for owner-occupied and tenant-occupied housing.23 To infer the share

of nonfinancial noncorporate tenant-occupied housing among all tenant-occupied

housing, we use its share in mortgages on tenant-occupied housing using data from

the FAUS (FL113165105, FL113165405, FL153165105, FL893065105, FL893065405).

Finally, to arrive at net operating surplus, i.e. our measure of net rents, we add

back Current Transfer Payments, which mainly consist of insurance settlements (see

Mayerhauser and Reinsdorf, 2006).24 For owner-occupiers, we use NIPA Table 7.12.

Line 163.25 For nonfinancial noncorporate tenant-occupied housing, we calculate

current transfer payments to all tenant-occupied housing as the difference between

current transfer payments to all housing (NIPA Table 7.4.5. Line 19) and current

transfer payments to owner-occupied housing, and infer the share of nonfinancial

noncorporate tenant-occupied housing among all tenant-occupied housing based

on its share in tenant-occupied housing wealth using data from the FAUS again

(FL105035023, FL115035023, FL165035023).26

22The difference between monetary interest paid and net interest is imputed interest. In the housing
sector, imputed interest essentially stems from mortgage borrowing and property insurance: Homeowners
and landlords that have financed their homes with mortgages are consuming financial intermediation
services. These are called “Financial Services Furnished Without Payments” in the NIPAs. They are treated
as intermediate inputs (i.e., maintenance and other intermediate inputs) instead of interest, and are typically
imputed as the margin between mortgage interest rates and a reference rate at which the lender refinances
itself. In a similar spirit, insurance premiums paid by homeowners and landlords are often supplemented
through interest earned as insurers invest these premiums, called “Premium Supplements for Property and
Casualty Insurance”, which is treated as earned interest in the NIPAs.

23The percent difference of total interest and net interest was 7% for owner-occupiers during our sample
period.

24Since our measure of maintenance and other intermediate inputs includes incurance payments, we
symmetrically include insurance settlements as a benefit accruing to the homeowner. It is by far the smallest
of the above items and all results are robust to its removal.

25As before, we effectively assume that the share of mobile homes corresponds to its share in owner-
occupied structure values and reduce the resulting series accordingly.

26Note that while NIPA housing flows include the government sector, the FAUS’ residential wealth
measures do not. To correct for this, we use data from the BEA Fixed Assets Accounts (FAA) to scale up
FAUS values for the non-profit sector using the ratio of non-profit to government sector values in the FAAs.
For example, for the value of real estate, we use the Current-Cost Net Stock of Residential Fixed Assets (FAA
Table 5.1, Lines 6 & 8), and for depreciation we use Current-Cost Depreciation of Residential Fixed Assets (FAA
Table 5.4, Lines 6 & 8). These allocations affect our measures of rents only marginally.
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• Depreciation: To calculate depreciation, we rely on data for the consumption of

fixed capital from the FAUS. For owner-occupiers, we use FU156320063, and for

nonfinancial noncorporate tenant-occupied housing, we use FU116320065.

• Maintenance and Other Intermediate Inputs: To calculate maintenance and other

intermediate inputs, we start from Mayerhauser and Reinsdorf (2006) as before.

For owner-occupiers, we use Intermediate Goods and Services Consumed (NIPA Table

7.12. Line 155). We infer the share of mobile homes among all owner-occupied

housing by assuming that the ratio of depreciation plus maintenance and other

intermediate inputs over housing wealth is constant across owner-occupied housing

sectors, and reduce the series by that share. For nonfinancial noncorporate tenant-

occupied housing, we proceed in two steps. First, we calculate intermediate goods

and services consumed by all tenant-occupied housing as the difference between

intermediate goods and services consumed by all housing (NIPA Table 7.4.5. Line

6) and intermediate goods and services consumed by owner-occupied housing. We

then infer the share of nonfinancial noncorporate tenant-occupied housing among

all tenant-occupied housing by assuming that the ratio of depreciation plus mainte-

nance and other intermediate inputs over housing wealth is constant across tenant-

occupied housing sectors. To do so, we calculate tenant-occupied housing wealth as

described above and tenant-occupied consumption of fixed capital using data from

the FAUS (FU106320065, FU116320065, FU166320063). Second, we add the cost for

compensation of employees to arrive at maintenance and other intermediate inputs

for nonfinancial noncorporate tenant-occupied housing. We start by assuming that

all compensation of employees (NIPA Table 7.4.5. Line 14) is paid by tenant-occupied

housing, and allocate the share of nonfinancial noncorporate tenant-occupied hous-

ing among all tenant-occupied housing based on its share in tenant-occupied hous-

ing wealth again. Finally, we remove the imputed interest that we added to net rents

above from both, owner-occupied and nonfinancial noncorporate tenant-occupied

maintenance and other intermediate inputs.

• Taxes: We calculate net taxes of owner-occupiers as Taxes on Production and Imports

(NIPA Table 7.12. Line 158) minus Subsidies (NIPA Table 7.12. Line 159).27 For nonfi-

nancial noncorporate tenant-occupied housing, we conservatively assume that the

remainder of all housing-related taxes is paid by tenant-occupied for-profit sectors,

and calculate these taxes as the difference between all taxes on production and

27As before, we effectively assume that the share of mobile homes corresponds to its share in owner-
occupied structure values and reduce the resulting series accordingly.
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imports to housing (NIPA Table 7.4.5. Line 15), and taxes on production and imports

to owner-occupied housing. To calculate net taxes, we assume that the ratio of

taxes to subsidies is constant across owner-occupied and for-profit tenant-occupied

sectors (the implied assumption is that a large share of subsidies accrues to the

non-profit sector). Finally, we infer net taxes for nonfinancial noncorporate tenant-

occupied housing based on its share in for-profit tenant-occupied housing wealth

based on data from the FAUS again.

• Housing Stock: We adjust for the growth in the housing stock in various ways and

rely on a variety of data sources: Population estimates are based on U.S. Census data

and sourced from the Federal Reserve Bank of St. Louis (item POP). Housing Unit

estimates are based on Moura, Smith and Belzer (2015) for the years before 2010

and on the Census Housing Vacancy Survey Supplement of the Current Population

Survey (CPS/HVS) otherwise. Floor Space estimates are inferred from Moura, Smith

and Belzer (2015).28 Holding Period Gains are taken from the FAUS Revaluation

Accounts. We use FR155035013 for owner-occupiers and FR115035023 nonfinancial

noncorporate tenant-occupied housing.29 Quantity indices are taken from Davis and

Heathcote (2007). To be consistent with our price-rent approach, we use the quantity

indices derived from the Case-Shiller-Weiss price index for the period after 1975.30

We use the BEA price index for personal consumption expenditure to deflate nominal

returns (NIPA Table 2.3.4. Line 1) to be consistent with our housing consumption source

data. Consistent with our yearly flow and stock data, all price and quantity indices are

Q4-indices.

United Kingdom. For the U.K., we calculate returns between 1988 and 2016.31 We focus

on the Household Sector (S.14), the most representative sector of the U.K. housing market (it

accounted for close to 90% of residential housing on average during our sample period).

Since the U.K. National Accounts are based on the System of National Accounts (SNA), the

household sector includes activities associated with tenant-occupied housing (these are

28We extrapolate using a decadal trailing average of yearly growth rates for the years after 2011.
29We thank Eric Nielsen from the FRB for clarifying details of the Revaluation Accounts for us.
30Quantity indices are a widely used concept in national accounts and aim to capture changes in the

value of an asset that are not driven by (constant-quality) price changes. Quality changes are treated as
changes in quantity in such a decomposition. See Bureau of Economic Analysis (2017) for more details.

31The data provided by the ONS would allow us to include 1987 as well, but housing returns were
extraordinarily high in that year – in fact the inclusion of this one year would increase our return estimates
by almost a full percentage point. We therefore decided to drop it from the sample. As we can see from
Figure A.8, our net return series for the U.K. starts around its long-run mean in 1988.
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included in the nonfinancial noncorporate business sector in the U.S.).32 Moreover, since

all our data (except some measures of the physical housing stock) are based on the U.K.

National Accounts as published by the Office of National Statistics (ONS), ensuring a

sectoral match between housing wealth and rental flows is more straightforward for the

U.K. than for the U.S. However, for the period before 1995, the ONS does not provide

separate statistics for the household sector, but combined statistics for the Household &

Nonprofit Institutions Serving Households (HH & NPISH) Sector (S.14 & S.15), which we use

to extrapolate levels from the household sector backwards (between 1995 and 2015, the

household sector accounted for around 98% of housing wealth in the combined sector).33

Overall, we calculate five objects: (1) the value of the housing stock, (2) net rents, (3)

depreciation, (4) maintenance and other intermediate inputs, and (5) varying measures of

the physical housing stock. We add (3) and (4) to get a measure of depreciation gross of

maintenance. Since there is no property tax in the U.K., we set taxes to zero. The details

are as follows:

• Value of the Housing Stock: For the period since 1995, we add the value of resi-

dential structures, (Dwellings, E46V) and the value of residential land, (Land, E44N),

to calculate the total value of residential housing in the household sector. For the

period before 1995, the ONS only reported a combined value of structures and land

for residential housing for the HH & NPISH sector (series CGRI), which we use to

extrapolate levels backwards.

• Net Rents: To calculate net rents, we follow Piketty and Zucman (2014) and start

from Gross Operating Surplus in the household sector (series HABM).34 Note that

gross operating surplus includes net interest, so we do not need to add it back

as we do for the U.S. However, following Piketty and Zucman (2014) again, to

fully correct our measure of net rents for mortgage-related interest payments, we

need to add back imputed interest, called Financial Intermediation Services Indirectly

Measured (FISIM) in the U.K. National Accounts.35 But, unlike Piketty and Zucman

32See Bond et al. (2007) for details.
33The ONS started to report values for the household sector separately with the 2017 edition of the Blue

Book, following guidelines of the European System of Accounts 2010 (ESA 2010); most time series we are
interested in were updated back to 1995 only.

34Gross operating surplus in the household sector is essentially gross rents minus intermediate
consumption and payment of employees. Indeed, the depreciation we record for housing in the household
sector is higher than the depreciation allocated to gross operating surplus in the household sector in the
U.K. National Accounts. If anything, this suggests that we may miss some of the surplus generated by
housing in the household sector.

35See our discussion for the U.S. on imputed interest, i.e., the difference between net interest and
monetary interest paid.
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(2014), we take a more conservative approach and consider that secured debt should

command lower interest rates than unsecured debt. Therefore, instead of calculating

the share of financial liabilities secured on dwellings amongst all financial liabilities

in the household sector and allocating FISIM back proportionally, we use data on

household-mortgage-related FISIM published by the ONS on its website for the

years since 2005.36 Between 2005 and 2016, the difference between FISIM markups

on loans secured on dwellings and all other household debt was fairly constant at

3.6 percentage points on average. We assume that this difference also holds for the

years before 2005 and calculate household-mortgage-related FISIM using data on

all household-debt-related FISIM (series CRNB), all household debt (series NIWJ),

and household loans secured on dwellings (series NIWV) accordingly.37 Finally, we

subtract depreciation as calculated below to arrive at net rents.

• Depreciation: To calculate depreciation rates, we use data on the Consumption of

Fixed Capital (series MJX9) in the household sector. For the period before 1995, we

combine the corresponding series for the consumption of fixed capital (series CIHB)

with housing wealth (series CGRI) in the HH & NPISH sector. For the time period

where both series overlap (1995 to 2009), depreciation was around 0.5 percentage

points higher in the updated data series. Therefore, we conservatively increase our

depreciation estimates for the years before 1995 by 0.5 percentage points each year.

• Maintenance and Other Intermediate Inputs: To calculate Maintenance and Other

Running Costs, we subtract net rents, depreciation, and net taxes from total personal

consumption expenditure in the household sector. We proceed in two steps to

calculate personal consumption expenditure on housing in the household sector:

First, we calculate total personal consumption expenditure on housing across all

36We use the non-risk-adjusted FISIM allocated to households as owners of dwellings underlying
Figure 19 of the article “Financial intermediation services indirectly measured (FISIM) in the UK revisited”,
retrieved from https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/

financialintermediationservicesindirectlymeasuredfisimintheukrevisited/2017-

04-24, last accessed February 2018.
37We calculate FISIM markups on loans secured on dwellings as household-mortgage-related FISIM

divided by loans secured on dwellings. FISIM markups on all other household debt are calculated as the
difference between all household-debt-related FISIM and household-mortgage-related FISIM, divided by
the difference between all household debt and loans secured on dwellings. While fairly constant overall, the
difference between household-mortgage-related FISIM markups and other household-debt FISIM markups
tends to vary somewhat with overall FISIM markup levels between 2005 and 2016 (at an average markup
of 3.6 percentage points, the standard deviation was 0.5 percentage points). However, since the average
overall FISIM markup before 2005 is lower than the average overall FISIM markup since 2005 (if slightly
at 1.4 vs. 1.9 percentage points) and much less volatile (with a standard deviation of 0.2 vs. 0.7 percentage
points), our estimate for household-mortgage-related FISIM before 2005 should be slightly conservative if
anything.
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sectors as the sum of Actual Rentals for Housing (series ADFT), Imputed Rentals for

Housing (series ADFU), and Maintenance and Repair of the Dwelling (series ADFV).

Second, we allocate this total across all sectors based on the fraction of housing

wealth in the household sector vs. all remaining sectors.38

• Housing Stock: We adjust for the growth in the housing stock in various ways and

rely on a variety of data sources again: Population estimates are retrieved from the

ONS (series UKPOP). Housing Unit estimates are based on dwelling stock data from

the DCLG for the U.K. until 2013 (Table 101) and for England thereafter (Table 104).

Quantity Indexes are derived following the baseline methodology outlined in Davis

and Heathcote (2007); that is, we discount the value of the housing stock with a

(constant-quality) house price index.39

To be consistent with our housing consumption source data and our approach for

the U.S., we use the ONS price index for personal consumption expenditure to deflate

nominal returns (series CRXB). Consistent with our yearly flow and stock data, all price

and quantity indices are Q4-indices.

A.4.3 Consistency Across Rent-Price and Balance-Sheet Approaches

Figure A.8 plots the net housing returns for the balance-sheet and the price-rent approach

for the U.S. and the U.K. (top row), the correlation between net housing returns from

the balance-sheet and the price-rent approach for the U.S. and the U.K. (middle row),

and housing depreciation (gross of maintenance) and tax yields from the balance-sheet

approach for the U.S. and the U.K. (bottom row; there are no taxes in the U.K.). The

U.S. results are based on specifications 2 and 9 in Table 4. The U.K. results are based

on specifications 11 and 15 in the same table. We can see that both approaches yield

similar net return time series that are highly correlated. Moreover, depreciation and taxes

as derived from the balance-sheet approach have been fairly stable and trending around

their long-run averages over our sample periods, which verifies our constant-adjustment

approach for depreciation and taxes for the price-rent approach.

38We think that this is a conservative assumption, since rental yields tend to be higher in the household
sector than in other sectors. Note however that this assumption has no impact on our results for net rents
as we derive these directly from gross operating surplus.

39See our discussion of data sources for the price-rent approach for details on the U.K. house price index.
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A.5 Price and Quantity of Risk Across the Term Structure

Section 1 showed empirically that the term structure of discount rates for real estate – a

risky asset – is steeply downward-sloping. In this section, we apply asset pricing theory

to discuss a decomposition of this term structure into its building blocks: risk and return

across the term structure. This decomposition will help us understand the forces that

drive discount rates at different horizons, and provides a link between discount rates

observed on tradable assets and investments in climate change abatement.

A.5.1 Per-Period Discount Rates and Expected One-Period Returns

Most of the insights of asset pricing theory are clearest to interpret when thinking about

one-period expected returns, independent of the maturity of the asset. Since any asset can

be bought, held for one period, and then sold at the end of that period (before its matu-

rity), looking at the one-period return is one way to reduce assets of different maturities

to a common horizon. This allows us to compare their risk and return properties.

We start by introducing our main notation and by linking together the concepts of

returns to maturity and one-period returns. In what follows, we will sometimes refer to

general assets with maturity n that could pay cash flows such as dividends or rents at any

point in time up to maturity; these will simply be denoted with superscript n. A subset

of these assets is the set of claims to single cash flows at a specific point in time, maturity

n; we will denote these with superscript (n).

Define the one-period (gross) return per dollar spent on any security with maturity n

as the total amount obtained from buying the security and liquidating it after one period:

Rn
t,t+1 ≡

Pn−1
t+1 + Dt+1

Pn
t

,

Note that at the time the asset is sold, its maturity has shortened to n− 1. The return to

holding the security over multiple periods (and reinvesting all intermediate cash flows)

can be found by compounding the one-period returns. For example, the return to matu-

rity of any investment with maturity n is

Rn
t,t+n =

n−1

∏
k=0

Rn−k
t+k,t+1+k.

Of particular interest to us are the one-period returns and discount rates for claims to a

single cash flow Dt+n. In this case, the one-period returns in all but the last period are
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entirely driven by price movements (since Dt+k is zero for all k, except for k = n, the last

cash flow at maturity). What makes the return to this security of particular interest is its

intimate link to our per-period discount rates for horizon-specific cash flows, rn
t . To see

this, we can rewrite the return to maturity of such a claim as:

R
(n)
t,t+n =

Dt+n

P
(n)
t

;

we can do this since there are no dividends to be reinvested over the life of this security.

Taking expectations on both sides, and then rearranging, we obtain:

P
(n)
t =

Et[Dt+n]

Et[R
(n)
t,t+n]

.

Comparing this equation with equation A.2 in Section A.1, we immediately see that the

n-period expected return to maturity of a claim to a single dividend at t + n is exactly the

compounded discount rate to be applied to that security: Et[R
(n)
t,t+n] = (1 + rn

t )
n.

Next, we want to link these quantities to the one-period expected return, for which

we are able to provide a very intuitive risk-return decomposition. The focus of this

paper is on the average shape of the term structure of discount rates. Time-variation in

discount rates, while important in the asset pricing literature, plays a second-order role

in thinking about climate change investments. We therefore derive the link between one-

period expected returns Et[R
(n)
t,t+1] and per-period discount rates rn

t under the assumption

that per-period discount rates for a cash flow with a particular maturity are constant

over time; relaxing this assumption would complicate the intuition without adding any

economically relevant elements to the analysis. If expected returns are constant over time

(though they may be different across maturities, such that the term structure of discount

rates is not necessarily flat at each point in time), we have

Et[R
(n)
t,t+n] =

n−1

∏
k=0

Et[R
(n−k)
t,t+1 ],

where all the returns are for claims to single cash flows, Dt+k, at different horizons k. The

formula shows that in this case, not only the realized but also the expected returns are

linked through compounding. Since Et[R
(n)
t,t+n] is directly linked to rn

t as shown above, we
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can then easily substitute and take logs (and recall that ln(1 + x) ≃ x), to obtain:

rn
t ≃

1

n

n

∑
k=1

ln(Et[R
(k)
t,t+1]). (A.7)

Therefore, the discount rate for a particular horizon n is simply the average of the one-

period expected returns for claims to cash flows at each horizon. A flat term structure

of discount rates must then imply a flat term structure of expected one-period returns

across maturities; in fact, expected one-period returns and discount rates across maturi-

ties would all be equal. In Section A.5.2, we will build on this decomposition to further

elaborate on the forces that shape the term structure of discount rates.

A.5.2 Decomposing the Term Structure of Expected One-Period Returns

Now that we have clarified the link between one-period returns and per-period discount

rates, we focus on the one-period returns of securities with maturity n. We start by using

the fundamental asset pricing equation introduced in Section A.1.1 to decompose the

expected one-period returns R
(n)
t,t+1 into a component that reflects time discounting and a

component that reflects the riskiness of the underlying cash flow. It follows from:40

1 = Et[Mt,t+1R
(n)
t,t+1]

that:

Et[R
(n)
t,t+1] = R

f
t,t+1 − Covt[R

(n)
t,t+1, Mt,t+1]R

f
t,t+1,

where the first component R
f
t,t+1 = Et[Mt,t+1]

−1 is the one-period risk-free rate that

reflects time discounting, and the second component reflects an additional discount com-

pensating the investor for bearing risk (the covariance with the SDF reflects whether this

asset primarily pays off in good states of the world that have a low marginal utility

of consumption). The risk premium has the opposite sign of the covariance between

the stochastic discount factor (SDF) and the one-period return, Covt[Mt,t+1, R
(n)
t,t+1]. This

reflects the fact that a claim with a higher return in states of the world in which extra

resources are less valuable (i.e., when marginal utility Mt,t+1 is low) is less valuable to the

investors, and thus has a positive risk premium. Finally, to highlight the fact that only

innovations in the SDF matter for the purpose of understanding risk premia (rather than

40The fundamental asset pricing equation introduced in Section A.1.1 (equation A.1) can be restated as

P
(n)
t = Et

[

Mt,t+1P
(n−1)
t+1

]

, which implies 1 = Et

[

Mt,t+1
P
(n−1)
t+1

P
(n)
t

]

= Et

[

Mt,t+1R
(n)
t,t+1

]

.
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its mean, which instead pins down the risk-free rate), we can rewrite excess returns as:

Et[R
(n)
t,t+1]− R

f
t,t+1 = −Covt[R

(n)
t,t+1, Mt,t+1 − Et[Mt,t+1]]R

f
t,t+1.

As is common in asset pricing theory, we make the additional assumption that log returns

r
(n)
t,t+1 ≡ ln(R

(n)
t,t+1) as well as the log stochastic discount factor mt,t+1 ≡ ln(Mt,t+1) are at

least approximately jointly normally distributed, which allows us to simplify our expres-

sion for the risk premium to the covariance term alone (see, for example, Campbell and

Vuolteenaho, 2004):

Et[R
(n)
t,t+1]− R

f
t,t+1 ≃ −Covt[r

(n)
t,t+1, mt,t+1 − Et[mt,t+1]], (A.8)

The above notation highlights again that only innovations in the (log-)SDF,

mt,t+1 − Et[mt,t+1], matter for expected returns.

To highlight the forces that shape the term structure of expected one-period returns,

we will focus on analyzing the set of linear and log-linear consumption-based asset pric-

ing models, in which the stochastic discount factor is a function of consumption growth.

This class of models encompasses the vast majority of modern asset pricing models, in

particular those employed in climate change analysis, such as power utility models as in

Lucas (1978), long-run risk models with Epstein–Zin preferences as in Bansal and Yaron

(2004), and rare disaster models as in Barro (2006) and Gabaix (2012). As noted in Dew-

Becker and Giglio (2013), these asset pricing models can be nested in the following general

representation for the SDF innovations:41

mt,t+1 − Et[mt,t+1] = −
∞

∑
k=0

zk · (Et+1 − Et)∆ct+1+k, (A.9)

where ∆ct+1− Et∆ct+1 (the first term of the sum, i.e. for k = 0) is the shock to current con-

sumption growth, while (Et+1− Et)∆ct+1+k with k > 0 is news about future consumption

growth at horizon k, received during the holding period (between t and t + 1).

The terms zk depend only on the parameters of the utility function (not on the con-

sumption growth process), and represent risk aversion regarding news about consump-

tion growth at a particular horizon. They can be thought of as horizon-specific risk prices.

Substituting equation A.9 into equation A.8, we can write the expected return of any asset

41More precisely, all of these models produce this representation of the SDF depending only on
consumption growth news as long as the variance of consumption growth and higher moments are
constant; the decomposition easily generalizes to cases with arbitrary affine processes.
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by decomposing it across horizons:

Et[R
(n)
t,t+1]− R

f
t,t+1 ≃ z0Covt[r

(n)
t,t+1, ∆ct+1]

+ z1Covt[r
(n)
t,t+1, (Et+1 − Et)∆ct+2]

+ z2Covt[r
(n)
t,t+1, (Et+1 − Et)∆ct+3]

+ .... (A.10)

The above decomposition holds for any asset, and therefore holds for all claims to cash

flows at one particular point in the future, Dt+n, which jointly characterize the term struc-

ture of discount rates. It highlights that the shape of the term structure of expected one-

period returns (and thus ultimately of horizon-specific discount rates) can be attributed

to the interaction of two forces:

1. The term structure of horizon-specific risk prices zk, i.e., how much agents care about

long-term news relative to short-term news. The higher zk is for long maturities, the

more worried agents are about long-run risks in the economy.

2. The term structure of risk quantities, i.e. how much news about future consumption

growth there is in the economy, and how it affects claims at different maturities.

If there is no news about future consumption growth, for example if consumption

growth is iid, all the news terms (Et+1 − Et)∆ct+n and hence all of the respective

covariances will be equal to zero. If instead there is long-horizon consumption risk

(that is if consumption growth is predictable, for example because cash flows are

persistently mean-reverting), then the news terms (Et+1 − Et)∆ct+n are non-zero.

Moreover, the returns to claims of different horizons r
(n)
t,t+1 are then differentially

exposed to shocks at different horizons.

A.5.3 Explanations for a Downward-Sloping Term Structure of Dis-

count Rates for Risky Assets – Preferences vs. Cash Flows

We can put the above decomposition to work and ask what mechanisms can generate a

downward-sloping term structure of discount rates. As we can see from equation 14 of

our model as presented in Section 2, z0 = γ, but all zk’s are zero for k > 0 in equation

A.10 for an agent with power utility preferences. Put differently, such an agent is only

worried about one-period innovations in consumption. For an Epstein–Zin investor by

contrast, z0 = γ like in the power utility case, but zk = (γ− 1
ψ )θ

k for k > 0, where ψ is the

elasticity of intertemporal substitution and θ is a parameter close to 1 related to the time
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discount factor. Epstein–Zin parameterizations with γ >
1
ψ , as in standard calibrations

of the long-run risk model, thus imply that agents are worried both about immediate

consumption growth and pure news regarding future consumption. Since claims to long-

run cash flows Dt+n are naturally exposed to all dividend growth shocks from t to t + n

(Dt+n = Dt exp[∆dt+1 + ... + ∆dt+n]), claims become more exposed to long-run shocks as

their maturity increases. Accordingly, their risk premium grows with maturity as more

and more of the positive covariance terms in equation A.10 are added up with positive

weights. Therefore, introducing Epstein–Zin preferences would push the slope of the

term structure of discount rates upwards. To match the data on a downward-sloping

term structure of discount rates for risky assets, we would require an even stronger mean

reversion in cash flows as a consequence of our model presented in Section 2. More

generally, we are not aware of a standard representation of preferences that would push

towards a downward-sloping term structure of discount rates for risky assets.

As we can see again from equation 14, what we require for a downward-sloping term

structure of discount rates for risky assets are declining exposures of claims of different

maturity r
(n)
t,t+1 to the consumption shock ∆ct+1, i.e. risk quantities. In our setting presented

in Section 2, mean reversion in cash flows makes growth in the economy predictable and

implies that a climate disaster that strikes today has larger effects on immediate cash flows

than on distant cash flows, which exposes short-run returns more than long-run returns

to a consumption shock.

A.6 Details on the Model

This section presents details on our model. We derive the prices of claims to consumption

and rents at different horizons and all results presented in Section 2.

A.6.1 Assumptions and Parameter Restrictions

Throughout, we are going to evaluate the term structure of discount rates and expected

returns at the ergodic mean of all variables, i.e. evaluated when λt = E [λt] ≡ λ̄, xt =

E [xt] ≡ x̄, and yt = E [yt] ≡ ȳ. We assume that x and y have mean zero, which implies:

µx = −λ̄φξ and µy = −λ̄ψξ.
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The unconditional mean of λt is:

λ̄ =
µλ

1− α− χξ
> 0.

The long-run growth rate of consumption is:

µ− λ̄ξ > 0.

We further assume that consumption and rents have the same long-run growth rates,

requiring:

µd = µ + (η − 1) λ̄ξ.

Our calibration is discussed in Section 2.2 and summarized in Table A.8.

A.6.2 Pricing Claims to Single-Period Cash Flows

In Section A.7.1, we derive the prices of claims to arbitrary cash flows Zt+1 at different

horizons. This section presents the results. We start by generalizing the cash flow process

to:

∆zt+1 = µz + πzyt − ηz Jt+1,

where yt still captures persistent changes in the growth rate of the cash flows and Jt+1

is the underlying economic shock. Including separate and flexible loadings on persistent

changes in the growth rate of cash flows, πz, as well as the underlying economic shock, ηz,

will allow us to nest the dynamics of all assets and liabilities relevant to our discussion

in Section 2. This allows us to solve the model once and parameterize the solution as

needed. The solution is recursive and takes the following form:

p
(n)
z,t = az

n + bz
nxt + ez

nyt + f z
n

(

λt − λ̄
)

, (A.11)

where p
(n)
z,t is the log price-dividend ratio of a claim to the cash flow n periods ahead

(in levels, we write PD
(n)
z,t ). The full recursive expressions of the coefficients in terms of
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primitives are as follows:

az
n = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

bz
n = −γ + bz

n−1ρ + f z
n−1ν

ez
n = ez

n−1ω + πz

f z
n = f z

n−1α +
exp

{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
) .

with az
0 = bz

0 = ez
0 = f z

0 = 0. The prices of all assets and liabilities we discuss in Section 2

can be derived based on various parameterizations of the above solution.

Consumption: To derive claims to consumption, we need ∆zt+1 = ∆ct+1, i.e. µz = µ,

πz = 1, and ηz = 1. Also note that we need to replace yt with xt as a consequence, i.e. µy

with µx, ω with ρ, and ψ with φ. The price of a consumption strip claim is then:

p
(n)
c,t = ac

n + bc
nxt + f c

n

(

λt − λ̄
)

. (A.12)

Note that we can sum bz
n and ez

n to get bc
n as x and y are the same for a consumption claim.

The full recursive expressions of the coefficients in terms of primitives are as follows:

ac
0 = bc

0 = f c
0 = 0, and

ac
n = ln δ + (1− γ) µ + ac

n−1 + bc
n−1µx + f c

n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

− (1− γ) + bc
n−1φ + f c

n−1χ
)

ξ
}

− 1
)]

bc
n = (1− γ) + bc

n−1ρ + f c
n−1ν

f c
n = f c

n−1α +
exp

{(

− (1− γ) + bc
n−1φ + f c

n−1χ
)

ξ
}

− 1

1 + λ̄
(

exp
{(

− (1− γ) + bc
n−1φ + f c

n−1χ
)

ξ
}

− 1
) .

Risk-Free Bond: To derive claims to a risk-free bond with maturity n, we need Zt+n = 1

and zero otherwise. We set µz = 0, πz = 0, and ηz = 0. The price of a risk-free strip claim

is then:

b
(n)
f ,t = a

f
n + b

f
nxt + f

f
n

(

λt − λ̄
)

. (A.13)

Note that y and hence e f drops as a result of the above parameterization. The full recur-

sive expressions of the coefficients in terms of primitives are as follows: a
f
0 = b

f
0 = f

f
0 = 0,
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and

a
f
n = ln δ− γµ + a

f
n−1 + b

f
n−1µx + f

f
n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

γ + b
f
n−1φ + f

f
n−1χ

)

ξ
}

− 1
)]

b
f
n = −γ + b

f
n−1ρ + f

f
n−1ν

f
f

n = f
f

n−1α +
exp

{(

γ + b
f
n−1φ + f

f
n−1χ

)

ξ
}

− 1

1 + λ̄
[

exp
{(

γ + b
f
n−1φ + f

f
n−1χ

)

ξ
}

− 1
] .

Rents: To derive claims to rents, we need ∆zt+1 = ∆dt+1, i.e. µz = µd, πz = 1, and

ηz = η. The price of a rent strip claim is then:

p
(n)
d,t = ad

n + bd
nxt + ed

nyt + f d
n

(

λt − λ̄
)

. (A.14a)

The full recursive expressions of the coefficients in terms of primitives are as follows:

ad
0 = bd

0 = ed
0 = f d

0 = 0, and

ad
n = ln δ− γµ + µd + ad

n−1 + bd
n−1µx + ed

n−1µy + fn−1

(

µλ + λ̄ (α− 1)
)

(A.14b)

+ ln
[

1 + λ̄
(

exp
{(

γ− η + bd
n−1φ + ed

n−1ψ + f d
n−1χ

)

ξ
}

− 1
)]

bd
n = −γ + bd

n−1ρ + f d
n−1ν (A.14c)

ed
n = ed

n−1ω + 1 (A.14d)

f d
n = f d

n−1α +
exp

{(

γ− η + bd
n−1φ + ed

n−1ψ + f d
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ− η + bd
n−1φ + ed

n−1ψ + f d
n−1χ

)

ξ
}

− 1
) . (A.14e)

Damages: To derive claims to damages, we need ∆zt+1 = ∆qt+1, i.e. µz = µq, πz = −πq,

and ηz = −ηq. The price of a damage strip claim is then:

p
(n)
q,t = a

q
n + b

q
nxt + e

q
nyt + f

q
n

(

λt − λ̄
)

. (A.15)
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The full recursive expressions of the coefficients in terms of primitives are as follows:

a
q
0 = b

q
0 = e

q
0 = f

q
0 = 0, and

a
q
n = ln δ− γµ + µq + a

q
n−1 + b

q
n−1µx + e

q
n−1µy + f

q
n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

γ + ηq + b
q
n−1φ + e

q
n−1ψ + f

q
n−1χ

)

ξ
}

− 1
)]

b
q
n = −γ + b

q
n−1ρ + f

q
n−1ν

e
q
n = e

q
n−1ω− πq

f
q
n = f

q
n−1α +

exp
{(

γ + ηq + b
q
n−1φ + e

q
n−1ψ + f

q
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ + ηq + b
q
n−1φ + e

q
n−1ψ + f

q
n−1χ

)

ξ
}

− 1
) .

A.6.3 Per-Period Discount Rates

We derive per-period discount rates for claims to arbitrary cash flows Zt+1 at different

horizons again and parameterize those accordingly to derive implied discount rates for

all assets and liabilities discussed in Section 2. Remember from Section A.5.1 that per-

period discount rates rn
z,t are implicitly defined by:

P
(n)
z,t =

Et [Zt+n]
(

1 + rn
z,t

)n .

In Section A.7.2, we show that expected cash flows can be expressed as:

Et [Zt+n] = Zt exp

{

nµz + πz
1−ωn

1−ω
yt + πzµy

n−1

∑
s=0

1−ωs

1−ω

}

Az,n,t, (A.16)

where the second and third term inside the curly brackets are related to persistent changes

in the growth rate of the economy, and Az,n,t is a term that captures the history of (path-

dependent) jump events. Formally, Az,n,t is defined as:

Az,n,t ≡ Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

πzψ
1−ωi

1−ω
− ηz

)

}]

. (A.17)

These expectations can be computed in closed form for short horizons, but are best com-

puted numerically for longer horizons. We outline a numerical solution algorithm in

Section A.7.3. Rearranging and substituting for Et [Zt+n] using equation A.16, we get:

(

1 + rn
z,t

)n
=

exp
{

nµz + πzµy ∑
n−1
s=0

1−ωs

1−ω + πz
1−ωn

1−ω yt

}

Az,n,t

exp
{

p
(n)
z,t

} .
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Taking logs and approximating ln (1 + x) ≃ x, we get:

rn
z,t ≃

1

n

[

nµz + πzµy

n−1

∑
s=0

1−ωs

1−ω
+ πz

1−ωn

1−ω
yt + ln Az,n,t − p

(n)
z,t

]

.

Substituting for p
(n)
z,t using equation A.11, we get:

rn
z,t ≃ µz +

1

n

[

πzµy

n−1

∑
s=0

1−ωs

1−ω
+ πz

1−ωn

1−ω
yt + ln Az,n,t

]

(A.18)

−
1

n

[

az
n + bz

nxt + ez
nyt + f z

n

(

λt − λ̄
)]

,

with az
n, bz

n, ez
n, and f z

n defined as in equation A.11, and Az,n,t defined as above.

Consumption: To derive per-period discount rates for consumption, we need ∆zt+1 =

∆ct+1, i.e. µz = µ, πz = 1, and ηz = 1. Also note that long-run dynamics in consumption

are driven by x instead of y, and so we also need to replace yt with xt as a consequence,

i.e. µy with µx, ω with ρ, and ψ with φ. The per-period discount rate is then:

rn
c,t ≃ µ +

1

n

[

µx

n−1

∑
s=0

1− ρs

1− ρ
+

1− ρn

1− ρ
xt + ln Ac,n,t −

(

ac
n + bc

nxt + f c
n

(

λt − λ̄
))

]

,

with ac
n, bc

n, and f c
n defined as in equation A.12 (note that we can sum bz

n and ez
n to get bc

n

as x and y are the same for a consumption claim), and Ac,n,t defined as:

Ac,n,t = Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

φ
1− ρi

1− ρ
− 1

)

}]

.

Risk-free rate: The risk-free rate in the economy is given by:

R
f
t,n = 1/B

(n)
t ,

and linked to the risk-free discount rate by R
f
t,n =

(

1 + r
f
t,n

)n
. Approximating ln (1 + x) ≃

x, we have:

r
f
t,n ≃

1

n
ln R

f
t,n = −

1

n
ln B

(n)
t = −

1

n
b
(n)
f ,t = −

1

n

(

a
f
n + b

f
nxt + f

f
n

(

λt − λ̄
)

)

,
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where a
f
n, b

f
n, and f

f
n are defined as in equation A.13. The risk-free rate increases in xt and

decreases in the severity and probability of disasters.

Rents: To derive per-period discount rates for rents, we need ∆zt+1 = ∆dt+1, i.e. µz =

µd, πz = 1, and ηz = η. The per-period discount rate is then:

rn
d,t ≃ µd +

1

n

[

µy

n−1

∑
s=0

1−ωs

1−ω
+

1−ωn

1−ω
yt + ln Ad,n,t −

(

ad
n + bd

nxt + ed
nyt + f d

n

(

λt − λ̄
)

)

]

.

where ad
n, bd

n, ed
n, and f d

n are defined as in equations A.14b to A.14e, and Ad,n,t is defined

as:

Ad,n,t ≡ Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

ψ
1−ωi

1−ω
− η

)

}]

.

Damages: To derive claims to damages, we need ∆zt+1 = ∆qt+1, i.e. µz = µq, πz = −πq,

and ηz = −ηq. The per-period discount rate is then:

rn
q,t ≃ µq +

1

n

[

−πqµy

n−1

∑
s=0

1−ωs

1−ω
− πq

1−ωn

1−ω
yt + ln Aq,n,t

]

−
1

n

[

a
q
n + b

q
nxt + e

q
nyt + f

q
n

(

λt − λ̄
)]

, (A.19)

where a
q
n, b

q
n, e

q
n, and f

q
n are defined as in equation A.15, and Aq,n,t is defined as:

Aq,n,t ≡ Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

−πqψ
1−ωi

1−ω
+ ηq

)

}]

.

A.6.4 Expected Returns and Return Decomposition for Rent Strips

In this section, we derive expressions for expected returns to rent strips and decompose

rent strip returns following the methodology outlined in Section A.5.2.

A.6.4.1 Expected Returns on Rent Strips

The return on a rent strip is given by:

R
(n)
d,t,t+1 =

P
(n−1)
d,t+1

P
(n)
d,t

.
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Consequently, the log return on the strip is simply:

r
(n)
d,t,t+1 = ln P

(n−1)
d,t+1 − ln P

(n)
d,t = p

(n−1)
d,t+1 − p

(n)
d,t + ∆dt+1

for n > 1, and ∆dt+1− p
(1)
d,t for n = 1 (for the first return, we just set p

(0)
d,t = 0; note that we

have to adjust for ∆dt+1 because we denote by p the log price-dividend ratio, not just the

log price). Substituting for the log price-dividend ratio and for dividend growth, we get:

r
(n)
d,t,t+1 =

[

ad
n−1 + bd

n−1xt+1 + ed
n−1yt+1 + f d

n−1

(

λt+1 − λ̄
)

]

−
[

ad
n + bd

nxt + ed
nyt + f d

n

(

λt − λ̄
)

]

+ [µd + yt − η Jt+1] .

Substituting for xt+1, yt+1, and λt+1 and collecting shock terms, we get:

r
(n)
d,t,t+1 =

[

ad
n−1 + bd

n−1 (µx + ρxt) + ed
n−1

(

µy + ωyt

)

+ f d
n−1

(

µλ + αλt + νxt − λ̄
)

]

−
[

ad
n + bd

nxt + ed
nyt + f d

n

(

λt − λ̄
)

]

+ [µd + yt] (A.20)

+
(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)

Jt+1.

For the expected return of the rent strip, we have:

Et

[

R
(n)
d,t,t+1

]

= Et

[

exp
{

r
(n)
d,t,t+1

}]

= exp
{[

ad
n−1 + bd

n−1 (µx + ρxt) + ed
n−1

(

µy + ωyt

)

+ f d
n−1

(

µλ + αλt + νxt − λ̄
)

]}

× exp
{

−
[

ad
n + bd

nxt + ed
nyt + f d

n

(

λt − λ̄
)

]

+ [µd + yt]
}

(A.21)

×
[

1 + λt

(

exp
{(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)

ξ
}

− 1
)]

,

where the last line follows from Jt+1 only taking value ξ ∈ (0, 1) with probability λt and

zero otherwise, and therefore:

Et

[

exp
{(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)

Jt+1

}]

= (1− λt) + λt exp
{(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)

ξ
}

.
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A.6.4.2 Return Decomposition for Rent Strips

As discussed in Section A.5, in our model with power utility, we have z0 = γ and zk = 0

for k > 0, and thus equation A.10 simplifies to:

Et[R
(n)
d,t,t+1]− R

f
t,t+1 ≃ γCovt

[

r
(n)
d,t,t+1, ∆ct+1

]

.

Substituting for consumption growth ∆ct+1 = µ + xt − Jt+1 and the log strip return from

equation A.20, and dropping constant terms, we get:

γCovt

[

r
(n)
d,t,t+1, ∆ct+1

]

= γCovt

[(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)

Jt+1,−Jt+1

]

.

Since Vart [Jt+1] = ξ2λt (1− λt), we obtain:

γCovt

[

r
(n)
d,t,t+1, ∆ct+1

]

= γ
[

η − φbd
n−1 − ψed

n−1 − χ f d
n−1

]

ξ2λt (1− λt) ,

and therefore:

Et[R
(n)
d,t,t+1]− R

f
t,t+1 ≃ γ Covt[r

(n)
d,t,t+1, ∆ct+1]

= γ
[

η − ψed
n−1 − φbd

n−1 − χ f d
n−1

]

ξ2λt(1− λt). (A.22)

where bd
n−1, ed

n−1, and f d
n−1 are defined in equations A.14c to A.14e.

A.6.5 Price-Rent Ratio Semi-Elasticity to Disaster Probability

The price-rent ratio of the freehold is simply the sum of the price-rent ratios of strips

across all maturities:

PD
f h
d,t =

∞

∑
n=1

PD
(n)
d,t =

∞

∑
n=1

exp
{

p
(n)
d,t

}

.

After substituting for the log price-rent ratio for the strips from equation A.14a, we can see

that the semi-elasticity of the price-dividend ratio with respect to the disaster probability

λt is:
∂pd,t

∂λt
=

1

PD
f h
d,t

∞

∑
n=1

PD
(n)
d,t f d

n .

It tells us by how much the price dividend-ratio moves (in percent) if the probability of

a disaster increases by one percentage point. Note that this semi-elasticity is affected by

two opposing forces: As the disaster probability increases, the risk-free rate falls for pre-

cautionary motives, while the risk premium increases. To isolate the effect of an increase
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in disaster probabilities (without a disaster having occurred) on the risk premium, we

can look at properties that are differentially exposed to the disaster risk. In particular, the

difference between the semi-elasticity of two properties, one with high and one with low

loadings on climate risk (ηH
d > ηL

d ) is:

∂
(

pH
d,t − pL

d,t

)

∂λt
=

1

PDH
d,t

∞

∑
n=1

PD
H(n)
d,t f n,H

d −
1

PDL
d,t

∞

∑
n=1

PD
L(n)
d,t f n,L

d .

Intuitively, we expect this number to be negative – all else equal, the risk premium of

a property with higher disaster-risk exposure should increase by more than the risk pre-

mium of a property with lower disaster-risk exposure as disaster risk increases (and hence

the price of a property with higher disaster-risk exposure should decrease relative to the

price of a property with lower disaster-risk exposure).

A.6.6 Expected Returns and Risk Premia for the Freehold

The return on the freehold is:

Et

[

R
f h
d,t,t+1

]

=
∞

∑
n=1





PDn
d,t

PD
f h
d,t

Et

[

R
(n)
d,t,t+1

]



 .

The risk premium for the freehold then is:

Et

[

R
f h
d,t,t+1 − R

f
t,t+1

]

=
∞

∑
n=1





PD
(n)
d,t

PD
f h
d,t

Et

[

R
(n)
d,t,t+1 − R

f
t,t+1

]



 .

A.7 Solving the Model

A.7.1 Cash Flow Strip Prices

We are going to derive prices of arbitrary cash flows Zt+1 here, where

∆zt+1 = µz + πzyt − ηz Jt+1,

and where yt captures persistent changes in the growth rate of the cash flows and Jt+1

is the underlying economic shock. Including separate and flexible loadings on persistent

changes in the growth rate of cash flows, πz, as well as the underlying economic shock, ηz,

will allow us to nest the dynamics of all assets and liabilities relevant to our discussion
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in Section 2. This allows us to solve the model once and parameterize the solution as

needed. The solution is recursive:

For maturity 1: We can price a claim to next period’s cash flow (i.e., the first cash flow

strip) as:

P
(1)
z,t = Et [Mt+1Zt+1] ,

or:
P
(1)
z,t

Zt
= Et

[

Mt+1
Zt+1

Zt

]

.

Rewriting in logs and substituting for the log stochastic discount factor, we have:

exp
{

p
(1)
z,t

}

= Et [exp {ln δ− γ∆ct+1 + ∆zt+1}] ,

and substituting for the consumption and cash flow growth rates, and collecting terms,

we have:

= Et [exp {ln δ− γ (µ + xt) + µz + πzyt + (γ− ηz) Jt+1}] .

We can now pull time-t information out of the expectation:

= exp {ln δ− γ (µ + xt) + µz + πzyt} Et [exp {(γ− ηz) Jt+1}] ,

and recall that Jt+1 only takes value ξ with probability λt and zero otherwise, and there-

fore:

Et [exp {(γ− ηz) Jt+1}] = (1− λt) + λt exp {(γ− ηz) ξ} .

After taking logs, we get:

p
(1)
z,t = ln δ− γ (µ + xt) + µz + πzyt + ln [1 + λt (exp {(γ− ηz) ξ} − 1)] .

Via Taylor expansion of the last term around the unconditional mean of λt, λ̄, we obtain:

ln [1 + λt (exp {(γ− ηz) ξ} − 1)]

≃ ln
[

1 + λ̄ (exp {(γ− ηz) ξ} − 1)
]

+
exp {(γ− ηz) ξ} − 1

1 + λ̄ (exp {(γ− ηz) ξ} − 1)

(

λt − λ̄
)

.

Thus:

p
(1)
z,t = ln δ− γ (µ + xt) + µz + πzyt
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+ ln
[

1 + λ̄ (exp {(γ− ηz) ξ} − 1)
]

+
exp {(γ− ηz) ξ} − 1

1 + λ̄ (exp {(γ− ηz) ξ} − 1)

(

λt − λ̄
)

,

or:

p
(1)
z,t = az

1 + bz
1xt + ez

1yt + f z
1

(

λt − λ̄
)

, (A.23)

with

az
1 = ln δ− γµ + µz + ln

[

1 + λ̄ (exp {(γ− ηz) ξ} − 1)
]

bz
1 = −γ

ez
1 = πz

f z
1 =

exp {(γ− ηz) ξ} − 1

1 + λ̄ (exp {(γ− ηz) ξ} − 1)
.

For arbitrary maturity n: For arbitrary maturities, we conjecture that all p
(n)
z,t will follow

the recursion:

p
(n)
z,t = az

n + bz
nxt + ed

z yt + f z
n

(

λt − λ̄
)

,

where az
1, bz

1, ez
1, and f z

1 are defined as above. We can price a claim to an n-period cash

flow (i.e., the n-th dividend strip) as:

P
(n)
z,t = Et

[

Mt+1P
(n−1)
z,t+1

]

,

or:

P
(n)
z,t

Zt
= Et



Mt+1

P
(n−1)
z,t+1

Zt+1

Zt+1

Zt



 .

Rewriting in logs and substituting for the log stochastic discount factor, we have:

exp
{

p
(n)
z,t

}

= Et

[

exp
{

ln δ− γ∆ct+1 + ∆zt+1 + p
(n−1)
z,t+1

}]

,

and substituting for the consumption and cash flow growth rates and the log price-

dividend ratio, and collecting terms, we have:

= exp {ln δ− γ (µ + xt) + µz + πzyt}

×Et

[

exp
{

(γ− ηz) Jt+1 + az
n−1 + bz

n−1xt+1 + ez
n−1yt+1 + f z

n−1

(

λt+1 − λ̄
)}]

.

Substituting for xt+1, yt+1 and λt+1, and collecting a few terms and all shocks, we get:

= exp
{

ln δ− γµ + µz + az
n−1 + bz

n−1µx + ez
n−1µy + f z

n−1

(

µλ + λ̄ (α− 1)
)}
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× exp
{(

−γ + bz
n−1ρ + f z

n−1ν
)

xt +
(

πz + ez
n−1ω

)

yt + f z
n−1α

(

λt − λ̄
)}

×Et

[

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

Jt+1

}]

.

Recall that Jt+1 only takes value ξ with probability λt and zero otherwise, and therefore:

Et

[

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

Jt+1

}]

= (1− λt) + λt exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

.

After taking logs, we get:

p
(n)
z,t = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(

µλ + λ̄ (α− 1)
)

+
(

−γ + bz
n−1ρ + f z

n−1ν
)

xt +
(

πz + ez
n−1ω

)

yt + f z
n−1α

(

λt − λ̄
)

+ ln
[

1 + λt

(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

.

Via Taylor expansion of the last term around the unconditional mean of λt, λ̄, we obtain:

ln
[

1 + λt

(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

≃ ln
[

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

+
exp

{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)

(

λt − λ̄
)

.

Thus:

p
(n)
z,t = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

+
(

−γ + bz
n−1ρ + f z

n−1ν
)

xt +
(

πz + ez
n−1ω

)

yt + f z
n−1α

(

λt − λ̄
)

+
exp

{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)

(

λt − λ̄
)

.

Matching coefficients, we get the following expression for the log price-dividend ratio:

p
(n)
z,t = az

n + bz
nxt + ez

nyt + f z
n

(

λt − λ̄
)

, (A.24)
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with:

az
n = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(

µλ + λ̄ (α− 1)
)

+ ln
[

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
)]

bz
n = −γ + bz

n−1ρ + f z
n−1ν

ez
n = ez

n−1ω + πz

f z
n = f z

n−1α +
exp

{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1

1 + λ̄
(

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)

ξ
}

− 1
) ,

and az
0 = bz

0 = ez
0 = f z

0 = 0.

A.7.2 Expected Cash Flows

The expected cash flow from a strip of arbitrary maturity n is:

Et [Zt+n] = ZtEt [exp {∆zt+1 + ... + ∆zt+n}] .

To compute Et [exp {∆zt+1 + ... + ∆zt+n}], we iterate forward:

For n = 1: For n = 1, we have:

Et [exp {∆zt+1}] = Et [exp {µz + πzyt − ηz Jt+1}]

= exp {µz + πzyt} Et [exp {−ηz Jt+1}]

Recall that Jt+1 only takes value ξ with probability λt and zero otherwise, and therefore:

Et [Zt+1] = Zt exp {µz + πzyt} [(1− λt) + λt exp {−ηzξ}] .

For n = 2: Iterating forward to n = 2, we have:

Et [exp {∆zt+1 + ∆zt+2}] = Et [exp {(µz + πzyt − ηz Jt+1) + (µz + πzyt+1 − ηz Jt+2)}] ,

substituting for yt+1 and collecting terms, we get:

= exp
{

2µz + πz (1 + ω) yt + πzµy

}

Et [exp {[πzψ− ηz] Jt+1 − ηz Jt+2}] .
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Note that the jump events are not independent unless λt is constant and define:

Az,2,t ≡ Et [exp {[πzψ− ηz] Jt+1 − ηz Jt+2}] .

Thus:

Et [Zt+2] = Zt exp
{

2µz + πz (1 + ω) yt + πzµy

}

Az,2,t.

For n = 3: Iterating forward to n = 3, we have:

Et [exp {∆zt+1 + ∆zt+2 + ∆zt+3}]

= Et [exp {(µz + πzyt − ηz Jt+1) + (µz + πzyt+1 − ηz Jt+2) + (µz + πzyt+2 − ηz Jt+3)}] ,

substituting for yt+1 and yt+2 iteratively and collecting terms, we get:

= exp
{

3µz + πz

(

1 + ω + ω2
)

yt + πz [1 + (1 + ω)] µy

}

×Et [exp {[πz (1 + ω)ψ− ηz] Jt+1 + [πzψ− ηz] Jt+2 − ηz Jt+3}] .

As before, define:

Az,3,t ≡ Et [exp {[πz (1 + ω)ψ− ηz] Jt+1 + [πzψ− ηz] Jt+2 − ηz Jt+3}] .

Thus:

Et [Zt+3] = Zt exp
{

3µz + πz

(

1 + ω + ω2
)

yt + πz [1 + (1 + ω)] µy

}

Az,3,t.

For arbitrary n: We conclude that cash flow growth is given by:

Et [Zt+n] = Zt exp

{

nµz + πz
1−ωn

1−ω
yt + πzµy

n−1

∑
s=0

1−ωs

1−ω

}

Az,n,t, (A.25a)

with

Az,n,t ≡ Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

πzψ
1−ωi

1−ω
− ηz

)

}]

. (A.25b)

These expectations can be computed in closed form for short horizons, but are best com-

puted numerically for longer horizons. We outline a numerical solution algorithm in

Section A.7.3.
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A.7.3 Solution method for Az,n,t

In this section, we describe our numerical solution method for Az,n,t. Remember that

Az,n,t is defined as:

Az,n,t ≡ Et

[

exp

{

n−1

∑
i=0

Jt+n−i

(

πzψ
1−ωi

1−ω
− ηz

)

}]

,

and captures the history of (path-dependent) jump events that go into cash flow growth.

More generically, we want to compute:

Az,n,t = Et [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]

for arbitrary constants βz
1...βz

n and arbitrary maturity n, where Jt+1 is a variable that,

conditional on time-t information (particularly λt), has value ξ with probability λt and

zero otherwise, and where

λt+1 = µλ + αλt + νxt + χJt+1,

with

xt+1 = µx + ρxt + φJt+1.

To solve for Az,n,t numerically, we start from the last period n. By the law of iterated

expectations, we have:

Et [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]

= Et [Et+n−1 [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]]

= Et

[

exp
{

βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n−1 Jt+n−1

}

Et+n−1 [exp {βz
n Jt+n}]

]

.

Note that the jumps Jt+1 to Jt+n−1 are all known by time t + n− 1, so we can pull them

outside the internal expectation. Next, we can solve for the internal expectation:

Et+n−1 [exp {βz
n Jt+n}] = (1− λt+n−1) + λt+n−1 exp {βz

nξ} .

We can think of this as a sort of binomial tree where jump probabilities change over time

– each period either a jump is realized or not, and that outcome also changes λ for the

next node. Note that the above expression is only a function of λ; call it fn−1 (λ, x) for

A.44



consistency with later steps:

fn−1 (λ, x) ≡ (1− λ) + λ exp {βz
nξ} .

We compute fn−1 (λ, x) on a grid of possible values for λ and x and store it for later use.

Updating our expression for Az,n,t, we have:

Az,n,t = Et

[

exp
{

βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n−1 Jt+n−1

}

fn−1 (λt+n−1, xt+n−1)
]

.

Next, we iterate back, and condition on the information set at t + n− 2:

Et

[

Et+n−2

[

exp
{

βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n−1 Jt+n−1

}

fn−1 (λt+n−1, xt+n−1)
]]

=

Et

[

exp
{

βz
1 Jt+1 + ... + βz

n−2 Jt+n−2

}

Et+n−2

[

exp
{

βz
n−1 Jt+n−1

}

fn−1 (λt+n−1, xt+n−1)
]]

.

Note again that the internal expectation is only a function of λt+n−2 and xt+n−2. In

particular:

Et+n−2

[

exp
{

βz
n−1 Jt+n−1

}

fn−1 (λt+n−1, xt+n−1)
]

=

Et+n−2

[

exp
{

βz
n−1 Jt+n−1

}

fn−1 (µλ + αλt+n−2 + νxt+n−2 + χJt+n−1, µx + ρxt+n−2 + φJt+n−1)
]

= (1− λt+n−2) [ fn−1 (µλ + αλt+n−2 + νxt+n−2, µx + ρxt+n−2)]

+λt+n−2

[

exp
{

βz
n−1ξ

}

fn−1 (µλ + αλt+n−2 + νxt+n−2 + χξ, µx + ρxt+n−2 + φξ)
]

,

where the last expression reflects the fact that Jt+n−1 is ξ with probability λt+n−2 and zero

otherwise. As before, call this function fn−2 (λ, x):

fn−2 (λ, x) ≡ (1− λ) [ fn−1 (µλ + αλ + νx, µx + ρx)]

+λ
[

exp
{

βz
n−1ξ

}

fn−1 (µλ + αλ + νx + χξ, µx + ρx + φξ)
]

.

We compute fn−2 (λ, x) on a grid of possible values for λ and x again and store it for

later use. Note that we are using the function fn−1 that we had computed in the previous

iteration to compute fn−2.

Next, we iterate back once more, and condition on the information set at t + n− 3:

Az,n,t = Et

[

exp
{

βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n−2 Jt+n−2

}

fn−2 (λt+n−2, xt+n−2)
]

=

Et

[

exp
{

βz
1 Jt+1 + ... + βz

n−3 Jt+n−3

}

Et+n−3

[

exp
{

βz
n−2 Jt+n−2

}

fn−2 (λt+n−2, xt+n−2)
]]

.
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We keep iterating this way until we condition on the information set t, which only de-

pends on λt (and xt).
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Appendix Figures

Figure A.1: Heatmap of Climate Attention Index in New Jersey
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Cross-Sectional Index, NJ

Note: Figure shows a heatmap of our “Climate Attention Index” in New Jersey at the ZIP-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.
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Figure A.2: Heatmap of Climate Attention Index in South Carolina
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Cross-Sectional Index, SC

Note: Figure shows a heatmap of our “Climate Attention Index” in South Carolina at the ZIP-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.

Figure A.3: Heatmap of Climate Attention Index in North Carolina
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Note: Figure shows a heatmap of our “Climate Attention Index” in North Carolina at the ZIP-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.
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Figure A.4: Hedonic Coefficients in Transaction Regression

Note: Figures show coefficients on hedonic controls from regression 1. The dependent variable is the
log price paid. Starting from the top left, the different panels show the coefficients on (i) indicators for
ventiles of property size, (ii) indicators for deciles of lot size, (iii) indicators for the number of bedrooms,
(iv) indicators for the number of bathrooms, (v) indicators on property age, and (vi) indicators on the
time since the last major remodeling of the property. The regression includes other control variables and
fixed effects as in Column 1 of Panel A, Table 1. The bars show 95% confidence intervals for standard
errors clustered at the ZIP-code-quarter level.
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Figure A.5: Hedonic Coefficients in Rental Regression

Note: Figures show coefficients on hedonic controls from regression 1. The dependent variable is the
log of the rental listing price. Starting from the top left, the different panels show the coefficients on
(i) indicators for ventiles of property size, (ii) indicators for deciles of lot size, (iii) indicators for the
number of bedrooms, (iv) indicators for the number of bathrooms, (v) indicators on property age, and
(vi) indicators on the time since the last major remodeling of the property. The regression includes other
control variables and fixed effects as in column 1 of Panel B, Table 1. The bars show 95% confidence
intervals for standard errors clustered at the ZIP-code-quarter level.
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Figure A.6: Cross-Sectional Distribution of the Rent-to-Price Ratio in the U.S.
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Note: The figure shows the distribution of the rent-to-price ratio for the 100 largest MSAs in the U.S.
in 2012 as constructed by Trulia, which observes a large set of both for-sale and for-rent listings. It is
constructed using a metro-level hedonic regression of log price on property attributes, ZIP-code fixed
effects, and a dummy for whether the unit is for rent. The rent-to-price ratio is constructed by taking the
exponent of the coefficient on this dummy variable.

A.53



Figure A.7: Price-to-Rent Ratio Time Series in the U.S.
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Note: The figure shows the time series of the price-rent ratio in the U.S., constructed as the ratio of the
Case-Shiller House Price Index and a rental price index that is constructed as discussed in Section A.4.1.
The index ratio is normalized to 100 in 2012.
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Figure A.8: Housing Return Estimates – Consistency Across Approaches

Note: Figures show the net housing returns for the balance-sheet and the price-rent approach for the U.S.
and the U.K. (top row), the correlation between net housing returns from the balance-sheet and the price-
rent approach for the U.S. and the U.K. (middle row), and housing depreciation (gross of maintenance)
and tax yields from the balance-sheet approach for the U.S. and the U.K. (bottom row; there are no
property taxes in the U.K.). The U.S. results are based on specifications (2) and (9) in Table 4. The U.K.
results are based on specifications (12) and (15) in the same table.
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Figure A.9: Rent Growth vs. PCE Growth in the U.S.
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Note: The figure shows the annual growth rates of the “Consumer Price Index for All Urban Consumers:
Rent of Primary Residence” (FRED ID: CUUR0000SEHA) and “Personal Consumption Expenditure”
(FRED ID: PCECA) since 1929.
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Figure A.10: House Prices and Rents in Prime Central London Areas during the 2007-
09 Financial Crisis
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Note: The figure shows the time series of house prices and rents for Prime Central London, Kensington,
and Chelsea for the period January 2005 to January 2012. The series are monthly and available from
John D Wood & Co. at http://www.johndwood.co.uk/content/indices/london-property-
prices/, last accessed February 2014.
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Appendix Tables

Table A.1: Dictionary for Climate Attention Index

Text Type Text

Single Words ’storm’,’storms’,’superstorm’,’hurricane’,’hurricanes’, ’fema’,
’tornado’, ’tornadoes’,’floodplain’

Pairs (’flood’,’risk’),(’flood’,’insurance’),(’flood’,’ins’),(’flood’,’plain’),(’flood’,’risk’),
(’flood’,’damage’),(’flood’,’zone’),(’flood’,’zones’),(’flood’,’protection’),
(’flood’,’safe’),(’hurricane’, ’zone’),(’hurricane’, ’zones’),(’hurricane’,’shutter’),
(’hurricane’,’shutters’),(’hurricane’,’shelter’),(’hurricane’,’shelters’),
(’hurricane’,’protection’),(’hurricane’,’safe’),(’hurricane’,’impact’),
(’hurricane’,’curtains’), (’sea’,’level’),(’storm’,’zone’),(’storm’,’zones’),
(’storm’, ’window’),(’storm’, ’windows’),(’storm’,’door’),(’storm’,’doors’),
(’storm’,’water’),(’storm’,’protection’),(’storm’,’safe’),(’tornado’,’shutter’),
(’tornado’,’shutters’),(’tornado’,’shelter’),(’tornado’,’shelters’)

Hurricane Names ’keith’,’allison’,’iris’,’michelle’,’isidore’,’lili’,’fabian’,’isabel’,’juan’,’charley’,
’frances’,’ivan’,’jeanne’,’dennis’,’katrina’,’rita’,’stan’,’wilma’,’dean’,’felix’,
’noel’,’gustav’,’ike’,’paloma’,’igor’,’tomas’,’irene’,’sandy’,’ingrid’,’erika’,
’joaquin’,’matthew’,’otto’

Note: The table shows the dictionary used to construct the “Climate Attention Index”.
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Table A.2: Top Climate Words in Florida

Words Number of Listings Containing the Word Frequency

hurricane(s) 465,308 3.309%
hurricane shutter(s) 241,812 1.720%
storm(s) 114,893 0.817%
hurricane impact 66,485 0.473%
flood insurance 57,737 0.411%
flood zone(s) 45,696 0.325%
hurricane protection 18,285 0.130%
storm door(s) 13,286 0.094%
storm window(s) 7,692 0.055%
storm protection 5,644 0.040%
sea level 3,808 0.027%
FEMA 3,448 0.025%
hurricane safe 1,798 0.013%
flood plain 1,684 0.012%
storm water 971 0.007%
hurricane shelter(s) 603 0.004%
storm safe 491 0.003%
tornado(es) 457 0.003%
flood risk 373 0.003%
flood damage 235 0.002%
hurricane zone(s) 178 0.001%
hurricane curtains 171 0.001%
flood protection 117 0.001%
tornado shelter(s) 74 0.001%
storm zone(s) 30 0.000%
flood safe 9 0.000%
tornado shutter(s) 1 0.000%

Total number of listings 14,059,936

Note: The table shows the most commonly occurring words signaling increased attention paid to

climate change in the state of Florida.
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Table A.3: Top Climate Words in New Jersey

Words Number of Listings Containing the Word Frequency

storm(s) 20,702 0.602%
flood insurance 15,342 0.446%
flood zone(s) 14,354 0.417%
storm door(s) 10,020 0.291%
hurricane(s) 5,842 0.170%
FEMA 5,253 0.153%
storm window(s) 2,316 0.067%
flood risk 1,395 0.041%
flood damage 834 0.024%
flood plain 678 0.020%
superstorm 529 0.015%
storm water 369 0.011%
sea level 326 0.009%
hurricane shutter(s) 213 0.006%
hurricane impact 68 0.002%
storm protection 27 0.001%
flood protection 25 0.001%
storm zone(s) 17 0.000%
hurricane protection 9 0.000%
storm safe 9 0.000%
flood safe 3 0.000%
hurricane zone(s) 2 0.000%

Total number of listings 3,441,094

Note: The table shows the most commonly occurring words signaling increased attention paid to

climate change in the state of New Jersey.
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Table A.4: Top Climate Words in North Carolina

Words Number of Listings Containing the Word Frequency

storm(s) 18,160 0.376%
flood zone(s) 11,788 0.244%
storm door(s) 11,075 0.229%
flood insurance 8,587 0.178%
hurricane(s) 5,232 0.108%
storm window(s) 4,161 0.086%
flood plain 4,215 0.087%
hurricane shutter(s) 2,639 0.055%
sea level 1,169 0.024%
FEMA 635 0.013%
storm water 385 0.008%
tornado(es) 211 0.004%
storm protection 107 0.002%
hurricane protection 74 0.002%
hurricane impact 74 0.002%
flood damage 55 0.001%
tornado shelter(s) 42 0.001%
flood risk 32 0.001%
flood protection 22 0.000%
hurricane shelter(s) 22 0.000%
storm safe 10 0.000%
hurricane safe 8 0.000%
hurricane zone(s) 6 0.000%
storm zone(s) 1 0.000%

Total number of listings 4,827,756

Note: The table shows the most commonly occurring words signaling increased attention paid to

climate change in the state of North Carolina.
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Table A.5: Top Climate Words in South Carolina

Words Number of Listings Containing the Word Frequency

storm(s) 11,354 0.472%
hurricane(s) 7,243 0.301%
storm door(s) 6,406 0.266%
flood insurance 5,340 0.222%
flood zone(s) 3,848 0.160%
hurricane shutter(s) 2,531 0.105%
storm window(s) 2,305 0.096%
flood plain 614 0.026%
sea level 422 0.018%
hurricane protection 343 0.014%
FEMA 300 0.012%
hurricane impact 182 0.008%
tornado(es) 175 0.007%
flood damage 165 0.007%
storm water 160 0.007%
hurricane zone(s) 103 0.004%
storm protection 101 0.004%
tornado shelter(s) 97 0.004%
hurricane shelter(s) 29 0.001%
hurricane safe 21 0.001%
flood risk 19 0.001%
storm safe 18 0.001%
flood safe 8 0.000%
flood protection 3 0.000%

Total number of listings 2,406,832

Note: The table shows the most commonly occurring words signaling increased attention paid to

climate change in the state of South Carolina.
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Table A.6: Rent-to-Price Ratio Singapore - 2012

(1) (2) (3) (4)

For-Rent Dummy -3.095∗∗∗ -3.131∗∗∗ -3.123∗∗∗ -3.107∗∗∗

(0.044) (0.019) (0.014) (0.025)

Fixed Effects Quarter × Quarter × Month × Month ×
Postal Code Postal Code Postal Code Postal Code ×

Bedrooms

Controls · X X X

Implied Rent-to-Price Ratio 4.5% 4.4% 4.4% 4.5%

R-squared 0.804 0.873 0.872 0.872
N 106,145 105,189 105,189 105,189

Note: This table shows results from regression (A.6). The rent-to-price ratio is constructed by taking the
exponent of the coefficient on this dummy variable. The dependent variable is the price (for-sale price
or annualized for-rent price) for properties listed on iProperty.com in Singapore in 2012. Fixed effects are
included as indicated. In columns 2 to 4, we also control for characteristics of the property: we include
dummy variables for the type of the property (condo, house, etc.), indicators for the number of bedrooms
and bathrooms, property age, property size (by adding dummy variables for 50 equal-sized buckets),
information on the kitchen (ceramic, granite, etc.), which floor the property is on, and the tenure type for
leaseholds. Standard errors are clustered at the level of the fixed effect. Significance levels are as follows: ∗

(p<0.10), ∗∗ (p<0.05), ∗∗∗ (p<0.01).
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Table A.7: House Prices, Banking Crises, Rare Disasters

House Price Index Time Period Banking Crises Rare Disasters

Australia 1880 - 2013 1893, 1989 1918, 1932, 1944
Belgium 1975 - 2012 2008
Canada 1975 - 2012
Denmark 1975 - 2012 1987
Finland 1975 - 2012 1991 1993
France 1840 - 2010 1882, 1889, 1907, 1930, 2008 1871, 1915, 1943
Germany 1975 - 2012 2008
Italy 1975 - 2012 1990, 2008
Japan 1975 - 2012 1992
Netherlands 1649 - 2009 1893, 1907, 1921, 1939, 2008 1893, 1918, 1944
New Zealand 1975 - 2012 1987
Norway 1819 - 2013 1899, 1922, 1931, 1988 1918, 1921, 1944
Singapore 1975 - 2012 1982
South Africa 1975 - 2012 1977, 1989
South Korea 1975 - 2012 1985, 1997 1998
Spain 1975 - 2012 1978, 2008
Sweden 1952 - 2013 1991, 2008
Switzerland 1937 - 2012 2008 1945
U.K. 1952 - 2013 1974, 1984, 1991, 2007
U.S. 1890 - 2012 1893, 1907, 1929, 1984, 2007 1921, 1933

Note: The table shows the time series of house price indices used in the first column. The second and third
columns report dates of banking crises or rare consumption disasters for each country in the time period
provided in the first column. Banking crisis dates for all countries, except Singapore, Belgium, Finland,
New Zealand, South Korea, and South Africa, are from Schularick and Taylor (2012). Banking crisis dates
for the countries not covered by Schularick and Taylor (2012) are from Reinhart and Rogoff (2009). Rare
disaster dates indicate the year of the trough in consumption during a consumption disaster as reported by
Barro and Ursua (2008).
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Table A.8: Parameters of the Calibrated Model

Calibrated Variables Value

δ Time discount rate 0.99
γ Risk aversion 10
µ Average consumption growth 2%
ρ Consumption growth persistence 0.85
φ Consumption growth after disaster 0.025
η Exposure of rents to disaster 3
ω Rent growth persistence 0.915
ψ Rent growth after disaster 0.24
λ̄ Unconditional mean of disaster probability 3%
α Disaster probability persistence 0.75
ν Relation between disaster probability and consumption growth 0.1
χ Exposure of disaster probability to disaster 0.05
ξ Consumption drop after disaster 21%

Note: The table summarizes the calibration of the model in Section 2. The time discount rate δ, risk
aversion γ, drop in consumption following a disaster ξ, exposure of risky cash flows to the climate shock
η, and average consumption growth in the absence of a disaster µ are set following the standard asset
pricing literature. All other parameters are calibrated to match some of our new moments estimated in
Section 1. The remaining parameters of the consumption process are chosen to generate a recovery in
consumption growth after disasters (φ > 0) and persistent growth rates (ρ > 0). The magnitude of these
parameters targets a term structure of real interest rates that is slightly upward-sloping with a level of
around 1.0%. The remaining parameters of the rent process are chosen to generate a recovery in rent growth
after disasters (ψ > 0) and persistent rent growth (ω > 0). The magnitudes of these parameters are chosen
to match the shape and the level of the observed term structure of discount rates in the housing market as
described in Section 1. The steady-state conditional probability of disasters, λ̄ is set based on estimates in
Barro (2006), and the remaining parameters for the λ-process are chosen to obtain economically reasonable
interactions between the real economy and the disaster probability, while at the same time matching the
term structure of the risk-free rate (which is directly affected by the disaster probability dynamics through
the precautionary savings channel). In particular, the disaster probability is persistent (α), increases after a
jump (χ), and increases when expected consumption growth is above its trend (ν). x and y are assumed to
have mean zero, which implies: µx = −λ̄φξ and µy = −λ̄ψξ. The unconditional mean of λ pins down µλ as

λ̄ = µλ
1−α−χξ > 0. Consumption and rents are assumed to have the same long-run growth rates, requiring:

µd = µ + (η − 1) λ̄ξ. Further details of the calibration are discussed in Section 2.2. Parameter restrictions
are discussed in Section A.6.1.
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