SIR, The use of musculoskeletal ultrasound by rheumatologists is an exciting and expanding area of practice. It is a common practice for trainees in other medical and surgical specialties to keep a logbook of procedures (such as gastroscopies or bronchoscopies), to be reviewed as part of the annual appraisal/recording of in-training assessment (RITA) process. A logbook listing the number and type of ultrasound examinations undertaken by a trainee is a recommendation of the Royal College of Radiologists [1].

We have developed a simple electronic logbook which is designed to be completed on a handheld pocket computer (PDA) at the time of performing each scan. The logbook is based on a traditional Excel spreadsheet, with six separate pages for each commonly scanned region (hip, knee, foot and ankle, shoulder, elbow, hand and wrist). Because the logbook is an Excel spreadsheet, it can also be used on desktop or laptop personal computers (including a number of ultrasound machines). The details to record for each region were based on a recent assessment of competency in ultrasound undertaken by rheumatologists in Belfast [2].

After insertion of patient details such as date, hospital number and indication, the logbook can be completed by inserting y or n (yes or no) in each relevant box (for example: synovitis: y, erosions: n, effusion: n, Doppler signal: y). In some instances, the box can be completed by inserting numbers from 1 to 5 (for example, in the hand if there is synovitis of the 2nd and 3rd Metacarpophalangeal (MCP) joints, the numbers '2,3' are inserted into the MCP synovitis box). We have found that the details of each scan can be entered easily and quickly while scanning, particularly by those already familiar with PDAs. Only relevant boxes in each region need be completed.

This logbook has two main functions:

(i) by keeping a record of scans performed, it contributes useful documentation for training and appraisal purposes, particularly for specialist registrars and for rheumatologists developing ultrasound skills.

(ii) because the logbook is open on a PDA at the time of scanning, it is useful as an aide memoir for the rheumatologist sonographer to decide which important features to scan and record. Rheumatologists will use ultrasound for different regions and indications, depending on their practice and experience. This logbook is easily adaptable to meet these differing needs if required. The logbook is available for download through the Rheumatology website (see supplementary material). We encourage readers to download, use and adapt this logbook to suit their needs.

The authors thank Drs Taggart, G. Wright, Bell, Rooney, Pendleton, Meenagh and S. Wright at the Department of Rheumatology, Musgrave Park Hospital, Belfast and Dr A. Grey at the Department of Radiology, Belvoir Park Hospital, Belfast for their input.

The authors have declared no conflicts of interest.

A. P. CAIRNS, E. FILIPPUCCI, C. M. MCVEIGH, W. GRASSI

Department of Rheumatology, Musgrave Park Hospital, Belfast, Northern Ireland, UK and 1Department of Rheumatology, Universita Politecnica delle Marche, Ancona, Italy

Correspondence to: A. P. Cairns.
E-mail: andrew.cairns@greenpark.n-i.nhs.uk

1. Faculty of Clinical Radiology, Royal College of Radiologists. Ultrasound training recommendations for medical and surgical specialties. London: Royal College of Radiologists, 2005.

Against the current—when primary pericardial disease causes rheumatic disease

SIR, Herein we report a 74-yr-old male who was found to have an asymptomatic pericardial effusion (8 mm) without haemodynamic impairment and paroxysmal atrial fibrillation at a routine check-up in July 2004. The laboratory tests showed an elevated erythrocyte sedimentation rate (29 mm/h) with otherwise unremarkable results. A chest X-ray showed a cardiomegaly. His medical history included a coronary heart disease and cerebrovascular disease. As risk factors, arterial hypertension, smoking (90 py) and diabetes mellitus were present. Two months earlier, the patient developed increasing arthralgias in his large joints (hip, knee and shoulder). The patient did not experience night sweat, fever or weight loss. After 2 weeks, dyspnoea and bilateral leg oedema developed, and the patient was admitted to a district hospital. An echocardiography revealed a progressive pericardial effusion with haemodynamic impairment. Ultrasound-guided needle puncture of the effusion revealed 500 ml haemorrhagic fluid, which showed blood cells and reactively altered mesothelial cells in the cytological analysis as well as negative gram stain and bacterial cultures. As part of the diagnostic work-up, a highly positive anti-nuclear antibody (ANA) with a titre of 1:5120 (immunofluorescence on Hep2-cells, normal <1:40) was found. Systemic lupus erythematosus (SLE) was suspected and prednisolone 100 mg/day and oral cyclophosphamide 150 mg/day were initiated. The condition of the patient improved, but 1 month later, atrial fibrillation and dyspnoea recurred, and the patient was admitted to our department for further evaluation.

At admission, a physical examination revealed mild bilateral knee synovitis. An ECG showed a sinus rhythm: an echocardiography revealed a pericardial effusion with 8 mm diameter. A CT-scan of the thorax showed the pericardial effusion, some reactive, enlarged paracardial lymph nodes and small bilateral pleural effusions (Fig. 1A). Blood chemistry showed an elevated ESR (53 mm/h) and was otherwise unremarkable. Blood count and urine analysis were inconspicuous of any disorder. Virological tests for infectious agents causing myocarditis (coxackie, adenovirus, parvovirus and cytomegaly) were repeatedly negative, as were a tuberculin test and anti-mycobacterial antibodies. The ANA tests were highly positive (1:1280) with sub-specificity for Ro52. All other tested autoantibodies were negative. Despite the fact that haemorrhagic pericardial effusions are rare events in