Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis

Sebastiaan J. Vastert1,2, Richard van Wijk3, Leila E. D’Urbano4, Karen M. K. de Vooght3, Wilco de Jager1,2, Angelo Ravelli5, Silvia Magni-Manzoni6, Antonella Insalaco4, Elisabetta Cortis4, Wouter W. van Solinge3, Berent J. Prakken1,2, Nico M. Wulffraat1,2, Fabrizio de Benedetti4 and Wietse Kuis1,2

Abstract

Objective. Macrophage activation syndrome (MAS) in systemic onset juvenile idiopathic arthritis (SoJIA) is considered to be an acquired form of familial haemophagocytic lymphohistiocytosis (fHLH). fHLH is an autosomal recessive disorder, characterized by diminished NK cell function and caused by mutations in the perforin gene (PRF1) in 20–50% of patients. Interestingly, SoJIA patients display decreased levels of perforin in NK cells and diminished NK cell function as well. Here, we analysed PRF1 and its putative promoter in SoJIA patients with or without a history of MAS.

Methods. DNA of 56 SoJIA patients (41 Italian and 15 Dutch) was isolated. Of these, 15 (27%) had a confirmed history of MAS. We sequenced PRF1 and 1.5 kb of the 5′-upstream region. DNA sequence variations in the promoter region were functionally tested in transfection experiments using a human NK cell line.

Results. We detected a previously undescribed sequence variation (+499 C > T) in the promoter of PRF1 in 18% of the SoJIA patients. However, transfection experiments did not show functional implications of this variation. Secondly, we found that 11 of 56 (20%) SoJIA patients were heterozygous for missense mutations in PRF1. In particular, we found a high prevalence of the Ala91Val mutation, a variant known to result in defective function of perforin. Interestingly, the prevalence of Ala91Val in SoJIA patients with a history of MAS (20%) was increased compared with SoJIA patients without MAS (9.8%). One SoJIA patient, heterozygous for Ala91Val, showed profound decreased perforin levels at the time of MAS.

Conclusions. These findings suggest that PRF1 mutations play a role in the development of MAS in SoJIA patients.

Key words: Systemic JIA, Macrophage activation syndrome, Perforin, Lymphocytes, NK cells.

Introduction

Systemic onset juvenile idiopathic arthritis (SoJIA) is characterized by systemic signs of inflammation besides arthritis and constitutes 4–17% of all JIA [1]. Its adult equivalent is adult-onset Still’s disease.

Arthritis in SoJIA is often severe and debilitating and has a polyarticular course. Systemic signs of inflammation in SoJIA include a spiking fever, a skin rash, generalized lymphadenopathy, hepatosplenomegaly and sometimes serositis (more often pericarditis), making SoJIA a multisystem inflammatory disease.
Intriguingly, especially SoJIA patients are at risk for developing the serious inflammatory complication, macrophage activation syndrome (MAS), in the course of their disease [2, 3]. In general, MAS is not seen in patients with other types of JIA. MAS is thought to occur in ~10% of the SoJIA patients, although recent observations suggest that subclinical forms of MAS can be found in as many as 30% of the SoJIA patients [4].

The systemic symptoms and occurrence of MAS in SoJIA, along with the abrupt onset, the near equal ratio of affected male to female patients and the patterns of cytokines and laboratory abnormalities suggest that SoJIA is a distinct entity, strikingly different from other types of JIA [5]. Likewise, the pathogenesis of SoJIA seems to differ from other types of JIA in some important aspects. Unlike the other types of JIA, there are no known associations of SoJIA with HLA type [6] and autoantibodies or autoreactive T cells have not been identified so far.

These and other observations made in SoJIA patients suggest that, unlike the other types of JIA, in SoJIA, the role of adaptive immune responses may be limited. Instead, the role of the innate arm of the immune system, including monocytes/macrophages, NK cells and also neutrophils, seems to be more prominent [7, 8]. Many clinical features of SoJIA can be explained by immune responses involving IL-1, -6, -8, -18 and monocyte chemoattractant protein-1 [9–13].

Several groups have reported decreased levels of perforin in cytotoxic T cells and in particular NK cells, along with decreased NK cell function in SoJIA [14–16]. Perforin is a key molecule in the granule-mediated exocytosis pathway. This pathway is vital in immune responses to (intracellular) micro-organisms and in surveillance for malignancies [17]. Moreover, it has an important role in the maintenance of lymphoid and myeloid immune homeostasis, as shown in children with familial haemophagoctytic lymphohistiocytosis (fHLH), a rare autosomal recessive disorder [17]. Mutations in several genes related to the granule-mediated exocytosis killing pathway cause fHLH [18–20]. Of these, the perforin gene (PRF1) coding for the pore-forming protein perforin (PRF) seems to be the most important.

As it shares important clinical, immunological and histopathological features with familial HLH, MAS in SoJIA is considered to be an acquired form of HLH [21]. Here, we studied a large cohort of Italian and Dutch SoJIA patients, both with and without a history of MAS. We analysed PRF1 and its proximal 5’-regulatory region and performed luciferase-reporter assays to functionally test promoter variations addressing the question of whether mutations in PRF1 and its putative promoter contribute to the pathogenesis of SoJIA in general or MAS in SoJIA specifically.

Patients and methods

Patients

We included 41 Italian and 15 Dutch patients with SoJIA, diagnosed according to the ILAR criteria [22]. Mean age at disease onset was 4.7 (range 0.5–15) years. Of these, 15/56 (27%) had a confirmed history of MAS. MAS was diagnosed either on clinical grounds by the attending physician and/or confirmed on bone marrow biopsy (performed in 11 of 15 MAS patients).

Peripheral blood of all patients was obtained during outpatient visits or during admission to the hospital to isolate DNA. Moreover, fresh samples were used to determine perforin expression in NK cells and NK cell lytic function in all Dutch patients (n = 15), including one SoJIA patient during an episode of MAS. Controls consisted of 15 polyarticular JIA patients and 15 healthy controls.

Informed consent was obtained either from parents/guardians or from the children directly when they were >12 years old of both JIA patients and healthy controls. The study was approved by the local ethics committees of the Wilhelmina Children’s Hospital in Utrecht (METC number 03/211) and by the Institutional Review Boards of the IRCCSG Gaslini in Genova and the IRCCS Ospedale Pediatrico Bambino Gesù in Rome.

Flow cytometry

Intracellular staining of perforin in NK cell subsets was performed in aliquots of 100 μl of whole blood. Briefly, whole blood was incubated with appropriately diluted PE, PerCp- or APC-labelled mAbs against human CD3 (BD Biosciences, San Jose, CA, USA; clone SK7), CD16 (clone 3G8; BD Biosciences) or CD56 (clone SK7), CD25 (clone 5G9; Dako, Carpinteria, CA, USA). For intracellular staining of perforin (clone ΔG9; Kordia Life Sciences, Leiden, The Netherlands), the cells were first surface stained, then fixed and permeabilized in cytotoxicytoperm solution (BD Biosciences). Cells were incubated with 2% human AB serum to block aspecific binding and subsequently incubated with a FITC-labelled antibody to perforin. Finally, stained mononuclear cells were diluted in sheath fluid and run on a FACSCalibur (Becton Dickinson, San Jose, CA, USA). CellQuest software was used for analysis.

NK cell cytotoxicity assays

NK cell activity was assessed by a standard 4-h ⁵¹Cr-release assay with K562 cells as target cells. Briefly, K562 cells were washed in RPMI-1640 medium supplemented with 5% fetal calf serum (FCS; Gibco BRL, Gaithersburg, MD, USA), 200 mg/ml glutamine and penicillin/streptomycin (Gibco BRL), counted and loaded with ⁵¹Cr at 37°C. After 1 h, cells were washed thrice and 40,000 K562 cells (100 μl) were co-cultured with 100 μl of whole blood of patients or healthy controls. After 4 h, ⁵¹Cr release was assessed in 100 μl of the supernatant in a Packard Cobra gamma counter (GMi, Ramsey, MN, USA) as a measure of NK cell killing of K562 cells. Spontaneous lysis of cells was assessed by determining the ⁵¹Cr release of K562 cells incubated with medium alone, whereas maximum lysis was assessed by determining ⁵¹Cr release of K562 cells incubated with 3% Triton. Results are expressed as specific lysis per cent calculated as follows: (sample ⁵¹Cr
release—spontaneous release)/(maximum release—spontaneous release) × 100%.

DNA sequence analysis of PRF1

DNA of all patients was isolated (PureGene Genome DNA Isolation kit; Gentra Systems, Minneapolis, MN, USA) and used for DNA sequence analysis of PRF1 (GenBank NC 000010.9 and NM005041.3) and its immediate upstream region. PCRs were carried out using AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, CA, USA). All reagents were obtained from Applied Biosystems (Roche Molecular Systems, Branchburg, NJ, USA). The coding region (exons 2 and 3) of perforin was amplified using primers as previously described [17]. In addition, ~1.5 kb upstream of the initiator ATG as well as the complete untranslated region (UTR), covering exon 1 and part of intron 1, was amplified using additional primers (see supplementary methods are available at Rheumatology Online). PCR products were purified before DNA sequence analysis using the Qiaquick PCR purification Kit (Qiagen, Valencia, CA, USA) or EXOSap-IT kit (USB, Cleveland, OH, USA). Automated DNA sequence analysis was performed with the ABI Prism dRhodamine Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems) according to the manufacturer’s instructions. Sequencing reactions were carried out in forward and reverse direction, and samples were analysed on an Applied Biosystems ABI 310 Genetic Analyzer (Applied Biosystems).

DNA of 98 Italian and 50 Dutch healthy controls was screened for the presence of the novel PRF1 Arg28Cys variant and the novel C>T change at nucleotide -499 in the putative promoter by restriction enzyme digestion with Nsp1 and TaqI, respectively. Allele frequencies of formerly described mutations and variations in our study populations were compared with published data where appropriate.

Cell culture, promoter constructs and transfections

The main body of the promoter construct used in this study was kindly provided by Dr S. K. Anderson (National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD, USA) and contained 1136 bp upstream of the transcriptional start site (P2) [23]. This construct did not contain the 5′-UTR that comprises exon 1 and a small part (the first 4 bp) of exon 2. Since it has been described for other genes that the 5′-UTR may contain regulatory elements [24], we developed a construct including the complete UTR (P2 + UTR). This was done by using the Pfu DNA Polymerase Kit (Stratagene, La Jolla, CA, USA), sense primer 5′-GGCTTGGGCCAGCGATTATGCACCAGCAGTG-3′ (from -26 to -5 bp with a GGAG-tag attached). The blunt-end PCR fragment was cloned into the PCR-Blunt vector using Top-10 competent cells according to instructions (Invitrogen, Paisley, UK). It was subsequently excised and inserted into the MluI and XhoI sites of the pGL3-Basic vector (Promega, Madison, WI, USA). The sequence of the construct in the pGL3-Basic vector was verified by DNA sequence analysis before mutagenesis.

Mutagenesis was performed using the QuickChange Site-Directed Mutagenesis System developed by Stratagene. The following primer pairs were used: sense 5′-CAGTCG TGTGCATAATCAGGTCCCAAGCC-3′ and antisense 5′-GGCTTGGGCCAGCGATTATGCACCAGCAGTG-3′ for mutation -499C>T. All constructs were verified by DNA sequence analysis before transfection. We cultured the human NK cell line YT Indy, known to constitutively express high levels of perforin, in RPMI medium, supplemented with 5% FCS, 1% penicillin/streptomycin and glutamine at 37°C. Cells were transiently transfected using Superfect (Qiagen) according to the manufacturer’s instructions. Luciferase activities of wild-type promoter constructs were compared with those of the mutant promoter constructs (−499C>T). The promoterless pGL3-Basic Luciferase Reporter Vector (Promega) was used as a negative control.

In order to investigate the influence of other, more or less SoJIA-specific conditions on the expression of perforin in NK cells in patients with different promoter variations, we compared normal transfection conditions with conditions where 10.0 or 100.0 ng/ml human recombinant IL-18 (MBL, Nagoya, Japan), 1.0 or 10.0 ng/ml human recombinant IL-6 (Strathmann Biotec AG, Hamburg, Germany) and 100 ng/ml human recombinant IL-6-soluble receptor (R&D Systems, Minneapolis, MN, USA) were added to the culture system or where the culture temperature was elevated (incubator temperature 40°C) mimicking fever.

Statistical analysis

Comparisons of NK activity, perforin expression and luciferase activity were performed with the non-parametric Mann–Whitney U-test. Frequencies of mutations or sequence variations were compared using chi-square or Fisher’s exact test. P-values were two tailed and the significance cut-off was P < 0.05.

Results

For this study, we included 56 SoJIA patients from Italy (n = 41) and The Netherlands (n = 15). Of these, 15 (27%) had a confirmed history of MAS. As the diagnosis of MAS in active SoJIA patients is difficult, we used recently published clinical criteria for diagnosing MAS in SoJIA patients [25]. Table 1 shows patient characteristics of all SoJIA patients with a history of MAS with diagnostic parameters at the time of MAS.

All Dutch SoJIA patients (n = 15) were sampled, and freshly drawn peripheral blood mononuclear cells were FACS-stained to determine perforin expression in CD3-CD16 + CD56dim NK cells. These were compared with the perforin expression in NK cells of polyarticular JIA patients and healthy controls. At the same time, lytic NK cell function was determined in 51Cr-release assays. Interestingly, we were able to sample one SoJIA patient
during an episode of MAS and perform perforin staining of NK cell subsets as well as functional lytic NK cell assays.

As is shown in Fig. 1A, perforin expression in CD3-CD16+CD56dim NK cells of SoJIA patients was significantly decreased compared with healthy controls and poly-JIA patients. Furthermore, lytic NK cell function was deficient in SoJIA patients compared with healthy controls and poly-JIA patients, illustrated by decreased killing of K562 cells in a standard 51Cr-release assay (Fig. 1B). Intriguingly, the SoJIA patient sampled at the time of MAS showed profoundly decreased perforin levels in CD3-CD16+CD56dim NK cells and severely decreased NK cell lytic function (indicated by arrows in Fig. 1A and B and by the overlay-histogram in Fig. 1C) compared with healthy controls and SoJIA patients not sampled at the time of MAS.

These results confirm laboratory findings of our lab and others showing deficiency of the granule-mediated cytotoxic pathway in NK cells in SoJIA patients [11, 12, 26]. Analysis of the SoJIA patient at the time of MAS suggests that during MAS, perforin expression and lytic NK cell function are even more depressed than during active SoJIA.

To test whether decreased perforin expression and MAS in SoJIA patients were associated with (heterozygous) mutations or promoter variations in PRF1, we characterized the coding region (exons 2 and 3), its 5'-UTR (exon 1 and the first 4 bp of exon 2) and 1.5 kb of its immediate 5'-upstream region in all 56 patients. We found that 11 out of 56 SoJIA patients (∼20%) were heterozygous for a missense mutation in PRF1. Four different mutations were identified: the formerly described Arg4His (one patient), Ala91Val (seven patients), Asn252Ser (three patients) and a novel Arg28Cys change (one Dutch patient). All mutations and sequence variations are listed in Table 2 with allele frequencies of the found mutations and variations in our study populations. For comparison, allele frequencies of formerly described variations and mutations in appropriate control populations are also listed. The yet undescribed mutation (Arg28Cys) found in one Dutch patient was not detected in 50 healthy Dutch controls (100 alleles).

Interestingly, we detected a rather high prevalence (7/56 patients, 12.5%) of heterozygosity for the Ala91Val variant in our cohort of SoJIA patients (Table 2). This variant is known to be of functional importance. Strikingly, heterozygosity for Ala91Val was twice as frequent in SoJIA patients with a history of MAS compared with SoJIA patients without a history of MAS (20 vs 9.8%, corresponding with allele frequencies of 10.0 and 4.9%, respectively). When compared with published control populations (in total more than 4000 healthy controls, of which more than 2500 Italian healthy controls as well as different northern-European control populations), the allele frequency of Ala91Val in our subgroup of sJIA with a history of MAS was increased at least 2-fold [27–32].

In addition to mutations or variations in the coding region, we also identified a C>T change at position
-499 in the putative promoter region of PRF1 in 10/56 patients (18%). The -499 C>T promoter variant was again found in an increased frequency in SoJIA patients with a history of MAS (26.6%) compared with the cohort SoJIA patients without a history of MAS (14.6%, Table 2). However, we found comparable allele frequencies in our Italian (n = 98) and Dutch (n = 50) healthy control populations. Intriguingly, the Dutch SoJIA patient sampled during MAS with profoundly decreased perforin levels and NK cell lytic function, as shown in Fig. 1, was heterozygous for both the -499 C>T variation and the Ala91Val mutation. To test whether -499 C>T imposed functional effects upon perforin expression in NK cells, we performed transient transfection assays of wild-type and mutated promoter constructs (P2 + UTR) in a human NK cell line. Promoter activities are shown in Fig. 2A. Under standard culture conditions, we did not find differences in luciferase activity between the wild-type putative promoter and mutant promoter constructs (Fig. 2A). To investigate the influence of other, more or less SoJIA-specific conditions on the expression of perforin in NK cells, we also performed transfection experiments with in vitro culture conditions mimicking some features of active SoJIA. Therefore, human rIL-18 or rIL-6 + human rIL-6-soluble receptor was added in concentrations comparable to levels present in plasma of patients with active SoJIA. In addition, fever was mimicked by elevating culture temperature during transfection. The results of these in vitro simplified ‘multiple-hit’ experiments are demonstrated in Fig. 2B-D. No significant differences between wild-type and mutated constructs could be demonstrated.

Discussion

In the past few years, our group and others [7, 14, 26] have shown that NK cell dysfunction is a distinguishing feature of SoJIA compared with other types of JIA, and suggested this to be of importance in the pathophysiology of this disease [16]. In the present study, we found an even more marked decrease in perforin levels of NK cells along with a further decrease of lytic NK cell function, in a SoJIA patient sampled at the time of MAS (Fig. 1A–C).
This suggests that impaired NK cell cytotoxicity contributes to the susceptibility of SoJIA patients to develop MAS. As SoJIA is not a monogenically inherited disease, it is likely that decreased levels of perforin in cytotoxic lymphocytes of SoJIA patients are the result of multiple, possibly interacting factors. In the current study, we performed a comprehensive analysis with regard to the role of genetic variations in PRF1 in the pathogenesis of SoJIA in general, or MAS in SoJIA specifically. Our study included 56 SoJIA patients from four European paediatric rheumatology centres, representing one of the largest cohorts described so far in the literature. Importantly, our cohort includes a significant subgroup with a confirmed history of MAS. Besides the coding region of PRF1, we analysed a large segment of the putative promoter to include putative regulatory elements of PRF1 gene expression.

We found that 11 out of 56 SoJIA patients (~20%) were heterozygous for a missense mutation in PRF1. Interestingly, we found one heterozygous mutation (Ala91Val) with a particularly high incidence (7/56 patients, 12.5%) in our cohort of SoJIA patients. Moreover, the Ala91Val prevalence was particularly high in SoJIA patients with a history of MAS (3/15; 20.0%) when compared with SoJIA patients without MAS (4/41; 9.8%; \(P > 0.05 \) likely due to low numbers of patients). The Ala91Val substitution in perforin is a polymorphic variant with an allele frequency of 1.0–5.5% in large population-based control studies (more than 4000 healthy controls, including more than 2500 Italians and different northern-European control populations) [27–29, 31]. The alanine at residue 91 is conserved [33] and several studies have suggested a causal link between Ala91Val and atypical (late) presentation of fHLH [34, 35]. The Ala91Val variant has been studied extensively in multiple datasets in the past few years. These studies have shown that substitution of alanine into valine results in both pre- (expression in lymphocytes) and post- (lytic capacity) synaptic defective function of perforin [33, 36, 37]. We therefore propose that in patients with systemic onset JIA, a complex disorder caused by multiple interacting genetic and environmental factors, heterozygosity for Ala91Val is a risk factor for the development of MAS. This is supported in our cohort by the observation of extremely low perforin levels in NK cells along with severely depressed lytic NK cell function in Patient 15, sampled at the time of confirmed MAS.

Almost 20% of the SoJIA patients harbour heterozygous mutations in PRF1. Displayed are all SoJIA patients with mutations in PRF1 subdivided into SoJIA patients without (upper part) or with (lower part) a history of MAS. For comparison, allele frequencies in control populations are displayed in the lower row. Ht: heterozygous change, Ho: homozygous change.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>PRF1 genotypes in SoJIA patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>−499 C > T</td>
</tr>
<tr>
<td>Patient</td>
<td>MAS</td>
</tr>
<tr>
<td>P16</td>
<td>No</td>
</tr>
<tr>
<td>P20</td>
<td>No</td>
</tr>
<tr>
<td>P22</td>
<td>No</td>
</tr>
<tr>
<td>P23</td>
<td>No</td>
</tr>
<tr>
<td>P29</td>
<td>No</td>
</tr>
<tr>
<td>P37</td>
<td>No</td>
</tr>
<tr>
<td>P45</td>
<td>No</td>
</tr>
<tr>
<td>P46</td>
<td>No</td>
</tr>
<tr>
<td>P51</td>
<td>No</td>
</tr>
<tr>
<td>P54</td>
<td>No</td>
</tr>
<tr>
<td>Allele frequency in SoJIA without MAS (n = 41), %</td>
<td>8.5</td>
</tr>
<tr>
<td>Allele frequency in SoJIA with MAS (n = 15), %</td>
<td>13.3</td>
</tr>
<tr>
<td>Allele frequency in control populations, %</td>
<td>5.0–10.2</td>
</tr>
</tbody>
</table>
implied to be a susceptibility factor for the development of type 1 diabetes [29].

The novel Arg28Cys mutation, present in one Dutch patient in our cohort but absent in our healthy Dutch control population, may influence the function of the protein as it results in the loss of positive charge and may affect disulfide bridge formation. Online tools [38, 39] that predict effects of amino acid changes gave contradictory results concerning the change of arginine into cysteine at position 28 of the perforin protein. The patient concerned, P54 is 15 years old at this moment and has not developed MAS up till now. Repeated flow cytometry for perforin in cytotoxic lymphocytes and assessment of lytic NK cell function in Patient P54 showed intermediately decreased levels of perforin and lytic NK cell function (~20%).

Finally, we identified a variant (−499 C>T) in the putative promoter region of PRF1 in 10/56 patients (nine heterozygous patients and one homozygote). This 499 C>T variant was found in comparable allele frequencies in our healthy control populations (10.2% in Italian healthy controls compared with 5.0% in Dutch healthy controls), but was again found in higher frequencies in the subgroup of SoJIA patients with a history of MAS compared with SoJIA patients without MAS (13.3 vs 8.5%). Using predictive databases [40, 41], we found that the −499 C>T variation does not seem to affect binding of presently known transcription factors. Moreover, in transfection experiments assessing the functional consequences of promoter variation (luciferase reporter assays) in NK cells, we could not find statistically significant changes in luciferase activity of wild-type constructs compared with the mutant −499 C>T construct either in standard culture conditions or in ‘SoJIA-specific’ conditions (Fig. 2B). Therefore, we have no indications so far that this variant in the 5′-upstream region of PRF1 is associated with MAS in SoJIA patients.

Fig. 2 Transfection assays with wild-type and mutant promoter constructs of PRF1 in a human NK cell line (YT Indy). The promoter constructs include the UTR. There is no difference in luciferase activity between the mutant −499 C>T construct and the wild-type construct (A). This remains the case when certain SoJIA-specific features (i.e. fever, increased levels of IL-6 and soluble IL-6 receptor or IL-18, B) are included in the experimental settings, reflecting a simplified multiple hit model.
contributes to decreased levels of perforin in NK cells of SoJIA patients. However, the transcriptional regulation of PRF1 is complex [42], and recently it was shown that the induction of perforin in activated cytotoxic lymphocytes is under control of distal cis-acting locus control regions (LCRs) upstream of PRF1 [43]. Future studies may be aimed at the identification of mutations in these distal LCRs as putative candidates affecting perforin expression in SoJIA patients.

It is tempting to speculate that heterozygous mutations or promoter variations in other genes related to fHLH (UNC13D, STX11) could be risk factors for MAS in SoJIA as well. This is supported by a recent study [44], suggesting a role of UNC13D mutations in the pathogenesis of MAS in SoJIA. Moreover, a recent case report describes a SoJIA patient with a compound heterozygous mutation in UNC13D [45]. In contrast, a paper by Donn et al. [46] does not support a contributing role for genetic loci involved in fHLH to the pathophysiology of SoJIA. However, Donn et al. studied only a restricted number of specific SNPs in PRF1 and other genes possibly related to fHLH (UNC13D, Rab27A and GZMB) and did not analyse the full sequence of these genes. Most importantly, the study of Donn et al. displays no information about MAS in the SoJIA patients, whereas our data point specifically to a contributing role of heterozygous PRF1 mutations for the development of MAS in SoJIA patients and not to SoJIA itself.

Since it is hypothesized that there is a complex interplay of different factors and genes contributing to the increased risk of developing MAS in SoJIA, an even larger cohort (i.e. further international collaboration) is needed, including a sufficient number of patients with a history of MAS, to definitively sort this out.

In conclusion, in this study, we found indications that heterozygous missense mutations in PRF1 can be a risk factor for the development of MAS in SoJIA patients. It is, therefore, tempting to assume that (heterozygous) mutations in other genes involved in the pathogenesis of fHLH (such as genes encoding Syntaxin11 and MUNC13-4) could also be involved in the development of MAS in SoJIA patients.

Supplementary data

Supplementary data are available at Rheumatology Online.

Rheumatology key messages

- Low perforin expression and lytic function of NK cells in SoJIA patients are further depressed during MAS.
- Heterozygous mutations in PRF1 can be risk factors for MAS in SoJIA patients.

Acknowledgements

We greatly appreciate the practical help and worthy advice of Annet van Wesel and Brigit Oirschot from the Red Blood Cell Research Group at the University Medical Centre, Utrecht. The human NK cell-line YT Indy was kindly provided by Pieter de Koning and Alain Kummer, Department of Pathology, University Medical Centre, Utrecht. The promoter construct P2 was kindly provided by Dr S. K. Anderson (National Cancer Institute, Frederick Cancer Research and Development Centre, Frederick, MD, USA).

Funding: The study was supported by the Department of Health, Italy, through the Bambino Gesù Children’s Hospital.

Disclosure statement: The authors have declared no conflicts of interest.

References

Variations of the perforin gene in systemic JIA

