Primary Sjögren’s syndrome as a multi-organ disease: impact of the serological profile on the clinical presentation of the disease in a large cohort of Italian patients

Chiara Baldini1, Pasquale Pepe1, Luca Quartuccio2, Roberta Priori3, Elena Bartoloni4, Alessia Alunno4, Angelica Gattamelata3, Marta Maset2, Mariagrazia Modesti3, Antonio Tavoni1, Salvatore De Vita2, Roberto Gerli4, Guido Valesini3 and Stefano Bombardieri1

Abstract

Objective. The aims of this study were to describe the clinical presentation of primary SS (pSS) in a large cohort of patients by assessing the prevalence of the patient subgroups at high risk for severe extra-glandular manifestations and to explore the influence of the patients’ serological profile on disease severity and on immunosuppressive drug utilization.

Methods. Cumulative demographic, clinical, serological, histological and therapeutic data of 1115 pSS patients were retrospectively evaluated. Independent serological markers for glandular and extraglandular disease manifestations were identified by logistic regression.

Results. The cohort included 1115 (1067 female, 48 male) pSS patients. Severe extraglandular manifestations were detectable in 15% of the patients and were represented by active synovitis (11%), axonal sensory-motor neuropathy (2%), severe leucocytopenia (14%), cutaneous vasculitis (6%) and non-Hodgkin’s lymphoma (4.5%). We found that low C3/C4, hypergammaglobulinaemia, RF and cryoglobulinaemia were markers of severity for pSS. According to the number of serological variables, the patients were subdivided into three distinct groups: favourable (no serological markers), intermediate (one serological marker) and poor (two or more serological markers). In comparison with the other two patient groups, pSS patients presenting with two or more adverse determinants had a higher frequency of severe visceral disease complications and required more aggressive therapeutic interventions.

Conclusion. This study confirmed that the prevalence of the pSS high-risk subset for severe systemic manifestations is ~15%. Serological markers might help in the early identification of patients who are candidates to receive more aggressive treatments.

Key words: Sjögren’s syndrome, epidemiology, disease severity.

Introduction

Primary SS (pSS) is a complex systemic autoimmune disease primarily characterized by a focal chronic inflammation of the salivary and lacrimal glands; however, a certain percentage of patients might also develop severe extraglandular disease manifestations [1]. Thus the spectrum of pSS can vary from a benign slowly progressive autoimmune exocrinopathy to a heterogeneous potentially
life-threatening systemic disorder also characterized by an increased risk for non-Hodgkin’s lymphoma (NHL) [1, 2]. Recently the availability of novel biologic agents [3] has made it increasingly important to accurately assess the exact prevalence of so-called high-risk patients who are candidates to receive more aggressive treatments [1]. Moreover, great interest has arisen in identifying serological markers of severity for pSS that might help to improve the stratification of pSS patients in clinical practice. To date, a number of clinical and serological features have been linked with pSS severity [1, 4, 5]. However, all these markers have appeared of limited value in isolation and the impact of their combination with one another on pSS clinical presentation and long-term outcomes has scarcely been investigated in large cohorts of patients in real life.

This study was therefore aimed at describing the clinical and serological features of a cohort of 1115 patients with pSS in order to assess the prevalence of high-risk patient subgroups and the influence of the patient’s serological profile on disease severity and treatment. More specifically, we elaborated a stratification model, based on a combination of different markers of disease severity, that might represent a step forward in personalized medicine for pSS.

Patients and methods

Study design and study population

We conducted an observational, retrospective, cross-sectional multicentre study involving four Italian reference centres with substantial experience in the management of pSS. The case records of 1115 patients with a diagnosis of pSS were reviewed. All patients fulfilled four or more of the preliminary diagnostic criteria for SS proposed by the European Community Study Group in 1993 and 926/1115 also satisfied the American–European Consensus Group (AECG) 2002 criteria. Patients with a potentially associated defined CTD (i.e. RA, SLE) [6] or overlap syndromes (i.e. patients with ACAs and/or patients with RP and capillary lacrosse suggestive for scleroderma pattern [7, 8]) were excluded. Data collected included (i) age at diagnosis (i.e. when the patient fulfilled the classification criteria), (ii) age at inclusion in the study, (iii) cumulative clinical and immunological features during disease evolution (from the diagnosis), including presence of dry eyes/mouth, ocular test results, parotid enlargement and signs or symptoms of extraglandular involvement that were defined according to previous studies [9–13]: active articular involvement (arthritis, i.e. appearance or worsening of joint pain accompanied by morning stiffness >30 min, and arthritis, i.e. the presence of synovitis), interstitial lung disease (confirmed by imaging or an altered pattern on pulmonary function studies), RP, skin vasculitis (palpable purpura and/or rash with limited cutaneous vasculitis involving <18% of the body surface area and diffuse cutaneous vasculitis involving >18% of the body surface area), peripheral neurological involvement (sensory or motor peripheral neuropathy) diagnosed either by electrophysiology or biopsy, myositis (i.e. active muscular involvement proven by abnormal creatine kinase, abnormal EMG or biopsy, excluding weakness due to corticosteroid; the presence of myositis was considered in the spectrum of pSS whenever these signs and symptoms occurred during the follow-up, long after the diagnosis of the disease had been established) and renal involvement (persistent proteinuria >0.5 g/day, tubular acidosis, interstitial nephritis, glomerulonephritis). Among laboratory abnormalities, information was collected on cytopenia with neutropenia (<1500/mm³), and/or anaemia (haemoglobin <12 g/dl), and/or thrombocytopenia (<150,000/mm³) or lymphopenia (<1000/mm³), low levels of C3 (<90 mg/dl) and C4 (<20 mg/dl) by nephelometry and hypergammaglobulinaemia (IgG >16 g/l), thyroid function and hepatitis C or B seropositivity.

Statistical analysis was based on the serological test results retrieved from the lab records of the participating rheumatology centres at diagnosis and not prospectively reassessed in a centralized lab. Immunological tests included ANA determined by IIF assay on HEP-2 cells (a titre ≥1.160 was considered positive), RF detected by nephelometry and cryocrit level measured as a percentage of packed cryoglobulins after cold centrifugation of the serum, as previously described [14]. Regarding the antibodies to the extractable nuclear antigens Ro/SSA and La/SSB, the four Italian rheumatology centres utilized either commercial kits for the ELISA tests locally validated and/or counter-immunoelectrophoresis. The counter-immunoelectrophoresis was performed as previously described [15]. Anti-Ro60 and Ro52 antibodies were detected by a fluorescence enzyme immunoassay employing human recombinant antigens (Thermo Fisher Scientific, Waltham, MA, USA). The ELISA results were defined as positive or negative according to the manufacturer’s instructions.

The severity of the disease clinical manifestations was assessed using the European League Against Rheumatism (EULAR) Sjögren’s syndrome disease activity index (ESSDAI) glossary [13]. All patients gave informed consent for all procedures, which were carried out with local ethics committee (Comitato Etico per la Sperimentazione Clinica dei Medicinali, Azienda Ospedaliero-Universitaria Pisana) approval. The study was conducted in accordance with the Declaration of Helsinki.

Statistical analysis

Chi-square, analysis of variance (ANOVA) and logistic regression were performed. Patients with missing data were excluded from the respective analysis. Bonferroni correction was used for multiple comparisons. Statistical analysis was carried out using SPSS 13 (SPSS, Chicago, IL, USA).

Results

Patients’ characteristics

The cohort consisted of 1115 (1067 female, 48 male) pSS patients with a mean age at diagnosis of 51.6 years (s.d. 13.8) and a mean follow-up of 5.8 years (s.d. 6.5).
All the patients included satisfied the European classification criteria for pSS, while the AECG criteria were fulfilled in 926/1115 cases. The diagnosis was supported by a minor salivary gland biopsy in 708/1115 patients with a positive focus score (FS ≥ 1) detected in 81.5% (577/708) of the cases. Patients’ demographic, clinical and serological features are compared to the largest cohorts from the literature in Table 1 [9–12, 16]. Visceral systemic extraglandular pSS features were detectable in 520/1115 patients (46.6%), while the remaining 230/1115 (20.6%) presented only sicca symptoms. Generally the extraglandular manifestations presented by the patient cohort were mild, including arthralgias, RP, modest autoimmune cytopenia, limited cutaneous vasculitis, mild to moderately active pure sensory axonal polyneuropathy and mild to moderately active pulmonary involvement with radiological or high-resolution CT (HRCT) evidence of interstitial lung disease and normal or slightly abnormal lung function tests generally indicating a restrictive pattern [i.e. 70% with a carbon monoxide diffusing capacity (DLCO) >40% or 80% with a forced vital capacity (FVC) >60%]. Obstructive small airway physiological abnormalities were also observed in ~1.2% of the patients. The most frequent HRCT findings that we detected were ground-glass attenuation (2.3%), reticular pattern/small nodules (1.8%), bronchiectasis (1.3%) and honey-combing (0.3%). Severe extraglandular manifestations requiring immunosuppressive drugs were detected in 15% of the patients and were mostly represented by active synovitis (11.0%), axonal sensory-motor neuropathy (2.0%), severe neutropenia or lymphopenia (14.0%) and diffuse purpura or ulcers related to cutaneous vasculitis (6.0%). A minority of patients presented tubular acidosis with or without renal failure (1.0%) or glomerular involvement with proteinuria and histology findings indicating mesangial/mesangioproliferative chronic glomerulonephritis (0.7%), myositis (0.5%) or highly active cerebral vasculitis with cerebrovascular accident or transient ischaemic attack (0.5%) and transverse myelitis (0.2%). Finally, 50 cases of NHL were documented with an overall prevalence of 4.5%. Mucosa-associated lymphoid tissue NHL of the salivary glands constituted the majority of NHL subtypes, followed by diffuse large B cell lymphomas and nodal marginal zone lymphomas.

Impact of serological markers on pSS severity

We identified independent risk factors associated with each single pSS extraglandular manifestation (see supplementary Table S1, available at Rheumatology Online). Younger age at diagnosis and longer disease duration were generally associated to severe systemic pSS manifestations. We identified the following pSS serological biomarkers as markers of disease severity: low levels of C3/C4; RF positivity; hypergammaglobulinemia and cryoglobulins, which were more frequently observed in patients with salivary gland enlargement; skin vasculitis; and renal, neurological and haematological involvement, including the cases of NHL. In contrast, patients with anti-Ro/SSA positivity presented a higher frequency of leucocytopenia compared with anti-Ro/SSA-negative patients. Similarly, patients with anti-La/SSB were distinguished by a higher prevalence of pericarditis when compared with anti-La/SSB-negative patients.

In order to further explore the impact of serology on pSS clinical presentation and treatment, we stratified the patients according to the number of the adverse laboratory results into three categories: favourable (n = 0 serological markers), intermediate (n = 1) and poor (n ≥ 2) (Table 2). We found that in comparison with the other two patient groups, pSS patients included in the poor group had a higher frequency of severe visceral disease manifestations, including NHL. We consistently documented a significant increase in the utilization of immunosuppressive drugs and corticosteroids in these patients.

In contrast, patients without any adverse serological markers satisfied less frequently the AECG criteria and were distinguished by a benign sicca-limited disease course over the follow-up (Table 2). Intriguingly, the patients in the intermediate group compared with the favourable group still showed a greater number of extraglandular pSS manifestations requiring immunosuppressive drugs.

Discussion

This study describes the prevalence of pSS clinical phenotypes in a large cohort of patients focusing, in particular, on the impact of serological abnormalities on the severity of the disease presentation and on the consequent requirement of aggressive treatment interventions. Overall, in line with the existing literature, the results of this study confirmed that the clinical course of pSS is characterized by significant interpatient heterogeneity [9–12, 16]. In the present study, severe extraglandular manifestations were observed in 15% of the patients, consistent with the results of the larger cohorts in the literature, which reported an overall prevalence of severe systemic disease features in ~10–20% of pSS patients [9–12, 16]. We also found that the frequency of NHL in our cohort was 4.6%, in line with the most recent studies published by Martel et al. [16], Solans-Laque et al. [17] and Voulgarelis et al. [18], who reported an overall prevalence of lymphoma ranging from 4 to 9% in pSS.

Since severe pSS extraglandular complications generally occurred late in the disease course [4, 18], in this study we tried to identify any potential serological determinants of outcome for pSS. It has been previously reported that low C3 and C4 levels, cryoglobulins, monoclonal paraproteinaemia, anti-Ro/SSA, anti-La/SSB, RF and hypergammaglobulinemia represent poor prognostic serological factors in pSS associated with lymphoma and severe extraglandular features [1, 5, 17, 18]. In this study, we verified the statistical association between the most severe disease manifestations and single laboratory abnormalities. In addition, some interesting information has emerged from the analysis of our data. First, we found that the positivity for anti-Ro/SSA and anti-La/SSB had a limited poor prognosis value, especially for lymphoproliferative complications. This observation is
Table 1 Patients’ demographic, clinical and serological features

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>1115</td>
<td>110</td>
<td>400</td>
<td>422</td>
<td>1010</td>
</tr>
<tr>
<td>Female</td>
<td>1067 (95.7)</td>
<td>107 (97)</td>
<td>373 (93)</td>
<td>402 (95)</td>
<td>937 (93)</td>
</tr>
<tr>
<td>Age at diagnosis, mean (s.d.), years</td>
<td>51.6 (13.8)</td>
<td>62 (13)</td>
<td>52.7 (0.85)</td>
<td>55.4 (12.5)</td>
<td>53 (0.48)</td>
</tr>
<tr>
<td>Age at inclusion, mean (s.d.), years</td>
<td>57.5 (13.7)</td>
<td>—</td>
<td>58.7 (0.72)</td>
<td>—</td>
<td>58.7 (0.46)</td>
</tr>
<tr>
<td>Follow-up, mean (s.d.), years</td>
<td>5.8 (6.9)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Xerostomia</td>
<td>1033 (92.6)</td>
<td>97 (88)</td>
<td>390 (98)</td>
<td>—</td>
<td>975 (96)</td>
</tr>
<tr>
<td>Xerophthalmia</td>
<td>1054 (94.5)</td>
<td>86 (72)</td>
<td>371 (93)</td>
<td>—</td>
<td>968 (96)</td>
</tr>
<tr>
<td>Salivary glands enlargement, n (%)</td>
<td>346 (31.0)</td>
<td>50 (46)</td>
<td>73 (18)</td>
<td>110 (26)</td>
<td>269 (27)</td>
</tr>
<tr>
<td>Ocular tests positive</td>
<td>982 (88.1)</td>
<td>—</td>
<td>351 (95)</td>
<td>422 (100)</td>
<td>898 (94)</td>
</tr>
<tr>
<td>Arthralgias</td>
<td>683 (61.3)</td>
<td>82 (75)</td>
<td>147 (37)</td>
<td>165 (39)</td>
<td>490 (48)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>123 (11)</td>
<td>24 (22)</td>
<td>—</td>
<td>—</td>
<td>150 (15)</td>
</tr>
<tr>
<td>RF</td>
<td>239 (21.4)</td>
<td>55 (50)</td>
<td>62 (16)</td>
<td>146 (34.6)</td>
<td>187 (18)</td>
</tr>
<tr>
<td>Lung involvement</td>
<td>60 (5.4)</td>
<td>—</td>
<td>37 (9)</td>
<td>—</td>
<td>112 (11)</td>
</tr>
<tr>
<td>PNS involvement</td>
<td>59 (5.3)</td>
<td>23 (21)</td>
<td>29 (7)</td>
<td>—</td>
<td>110 (11)</td>
</tr>
<tr>
<td>Skin involvement</td>
<td>106 (9.5)</td>
<td>22 (20)</td>
<td>47 (12)</td>
<td>20 (4.7)</td>
<td>91 (9)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>50 (4.5)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ANA positive, n (%)</td>
<td>941 (84.4)</td>
<td>—</td>
<td>288 (74)</td>
<td>397 (94)</td>
<td>859 (85)</td>
</tr>
<tr>
<td>Anti-Ro/SSA</td>
<td>762 (68.3)</td>
<td>—</td>
<td>153 (40)</td>
<td>203 (50.5)</td>
<td>518 (52)</td>
</tr>
<tr>
<td>Anti-La/SSB</td>
<td>410 (36.8)</td>
<td>—</td>
<td>102 (26)</td>
<td>160 (40)</td>
<td>343 (34)</td>
</tr>
<tr>
<td>RF positive</td>
<td>582 (52.2)</td>
<td>—</td>
<td>146 (38)</td>
<td>136 (32.2)</td>
<td>467 (48)</td>
</tr>
<tr>
<td>Cryoglobulinaemia positive</td>
<td>59 (5.3)</td>
<td>—</td>
<td>27 (9)</td>
<td>107 (28)</td>
<td>62 (10)</td>
</tr>
<tr>
<td>Low C3</td>
<td>176 (15.8)</td>
<td>—</td>
<td>10 (3)</td>
<td>—</td>
<td>67 (9)</td>
</tr>
<tr>
<td>Low C4</td>
<td>124 (11.1)</td>
<td>—</td>
<td>23 (8)</td>
<td>—</td>
<td>66 (9)</td>
</tr>
<tr>
<td>Hypergammaglobulinaemia</td>
<td>530 (47.5)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

All values are n (%) unless stated otherwise. Ocular tests positive: positivity of Schirmer's test and/or Rose Bengal/Green Lissamine staining; PNS: peripheral nervous system.
particularly intriguing considering the controversy that has recently arisen regarding pSS classification criteria and anti-Ro/SSA antibodies as a mandatory criterion for pSS diagnosis [19, 20]. It is to be stressed, however, that the value of the comparison between our data and the existing literature might be hampered by the use of different methods of detection of these autoantibodies. In addition, in the present study, data on the specificity of anti-Ro/SSA (i.e. the 60 kDa SSA/Ro target antigen or the 52 kDa target) were available only in a minority of the patients and thus their clinical value will be the objective of a future centralized prospective study.

The second original aspect of our study was that, given that biomarkers may be of limited relevance in isolation, we examined the significance of a combination of the identified markers of severity in the prognostic stratification of pSS and found that the higher the number of laboratory abnormalities that the patient presented, the higher the prevalence of pSS systemic manifestations and complications over the follow-up. Patients with two or more serological adverse biomarkers were more prone to develop severe disease manifestations and NHL over the follow-up and consequently required a more aggressive treatment.

In conclusion, even if pSS is generally a benign systemic disorder, severe systemic manifestations might occur in about one-fifth of patients. Overall, our results suggest that the subset of patients at high risk of systemic complications is specifically characterized by an active serological profile suggestive for B cell chronic activation. Therefore, in clinical practice, serological markers of disease severity should be taken into account in the management of pSS. Patients presenting two or more laboratory abnormalities should be more closely monitored and be more deserving candidates for early aggressive immunosuppressive drugs. Undoubtedly our findings should be validated in prospective longitudinal cohort studies. However, considering the large amount of data collected and the inclusion in the stratification model of well-known markers of disease severity, this study might provide a solid body of information on the different clinical and serological faces of pSS and its subsets, thus representing a promising starting point towards individualized medicine for the disease.

Rheumatology key messages

- Severe systemic manifestations might occur in about one-fifth of Italian patients with primary SS.
- Patients with primary SS and signs of B cell activation may deserve aggressive treatment.

Acknowledgements

We wish to thank Wendy Doherty for her valuable contribution in reviewing the text.

Disclosure statement: The authors have declared no conflicts of interest.

Supplementary data

Supplementary data are available at Rheumatology Online.

References

2. Quartuccio L, Salvini S, Fabris M et al. BlyS upregulation in Sjögren’s syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal...