Roman Catholic beliefs produce characteristic neural responses to moral dilemmas

Julia F. Christensen, Albert Flexas, Pedro de Miguel, Camilo J. Cela-Conde, and Enric Munar
1Group of Human Evolution and Cognition, Associated Unit to the IFISC (CSIC-UIB), University of the Balearic Islands, Balearic Islands, Spain and 2Division of Radiology, Clínica Rotger de Palma, Balearic Islands, Spain

This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances—but thou shalt not kill.

Keywords: moral judgment; moral dilemmas; DLPFC; religion; moral emotions

INTRODUCTION

To put it crudely, does religion make people good [...], bad, or does it have no effect at all? [...] How could psychology not address such an important domain of belief, motivation, and action? (Bloom, 2012)

In standard moral dilemmas, a hypothetical agent has to decide whether to commit moral harm against a relatively minor number of people to save the lives of many. They were designed as ‘thought-experiments’ (Foot, 1967/1978) that include (or specifically exclude) particular morally relevant parameters (Thomson, 1976). As such, they provide an adequate means of experimental manipulation for the purpose of investigating, which parameters contribute most distinctively to the moral judgment, that is, the assessment an individual makes about the appropriateness of a moral transgression in a given situation (Greene et al., 2001, 2004; Hauser et al., 2007).

After more than a decade of neuroscientific research, the neural correlates of moral judgment are fairly well established [particularly, dorsolateral prefrontal cortex (DLPFC) and limbic system] (Greene, 2009; Moll and Schulkin, 2009). In addition, the importance of interindividual differences as potential mediators of moral judgment has been acknowledged and empirically addressed (e.g. Wang, 1996; Haidt and Graham, 2007; Bartels, 2008; Moore et al., 2007, 2011; Fumagalli et al., 2009, 2010; Graham et al., 2009; Lombrozo, 2009; Bartels and Pizarro, 2011). However, evidence of the influence of religious beliefs on moral judgment remains scarce, and results are inconclusive. Although some studies do find an effect of religiousness on moral judgment, others do not (Hauser et al., 2007; Young and Saxe, 2009b; Fumagalli et al., 2009, 2010). As stated by some of these authors, such inconclusive findings may be due to the fact that participants’ religiousness was not explicitly controlled for in the selection process.

Based on the previous behavioral evidence of a differential moral judgment performed by Catholic and non-religious individuals (Christensen, Gut and Cela-Conde, submitted for publication), this study aims to explore how strong religious beliefs (using Catholicism as an example) influence the neural correlates of moral judgment of standard moral dilemmas.

Diverging belief sets: Catholics and Atheists

Although religious and non-religious individuals are educated in the same moral values and rules of a society (Greene, 2008), we suggest that some values are more present in the reasoning of religious individuals (for a theoretical development of this point, see De Waal, 2010; discussed in Bloom, 2012). Of course, the difference may be due to individual thinking style, personality traits, particularly in the case of extreme religiousness, indoctrination or religious practices, although none of these options is exclusive. However, this discussion remains outside the scope of this article.

For the purpose of our study, we used the Roman Catholic confession as an example of a religious belief system, not aiming to make any specific assumptions about the Catholic confession in particular. Thus, we defined religiousness as an experimental variable with the potential to influence moral judgments of standard moral dilemmas (and underlying neural activity). We followed the Durkheimian approach that posits that a religious belief system is a unified system of principles and practices that ties a group of individuals into a moral community (Durkheim, 1912/2008; Haidt and Graham, 2007; Bloom, 2012). By definition, a religious community agrees on a number of rules about certain behaviors. Some are forbidden, whereas others are promoted as morally good. For the Roman Catholic belief system, the Bible designates such moral guidelines (e.g. Deuteronomy 5, pp. 4–21).
The reasons for the selection of the Roman Catholic belief system are 3-fold (see the Supplementary Data for a more detailed discussion of the choice). In a nutshell, this belief system: (1) very clearly emphasizes the fusion of thought and action (Cohen and Rozin, 2001). This may enhance feelings of conflict in Catholics about the action in a dilemma, even though they merely think about it. This becomes relevant because a moral dilemma task is a ‘thought experiment’; (2) very explicitly emphasizes the individual as a creature who must feel overtly guilty for sinful actions; and (3) explicitly involves an appeal for charity and empathy for others.

These three points are reflected in moral dilemmas as follows. Each moral dilemma proposes to help a group of people, saving them from death [an endeavor encouraged by the Catholic belief system (point 3)]. However, it also implies inflicting pain and extreme suffering (i.e. death) on another individual [promoting guilt (point 2)].

Catholics are prone to be more aware of this conflict (point 1) than are Atheists, because these two trails of action are explicitly supported by their belief system.

Five foundations of morality: emphasis on harm/care and purity/sanctity

The parameters manipulated in moral dilemma tasks are said to trigger the expression of basic human moral intuitions (Nichols and Mallon, 2006; Hauser et al., 2007; Nichols and Knobe, 2007; Nichols and Ulatowski, 2007). A well-known model in this domain is the Dual Process Hypothesis of Moral Judgment (DPHJM), which proposes that up-close and personal harm trigger fast, emotionally based responses, whereas responses to other types of harm, such as impersonal killing, are subject to more variation (Greene et al., 2001, 2004). However, we believe that another model, the Five Foundations Theory (Haidt and Graham, 2007), better grasps the essence of differences between religious and Atheist individuals’ moral judgment. This theory holds that human evolutionary history has shaped five moral pillars as cognitive bases of our moral behavior: (i) harm/care, (ii) fairness/reciprocity, (iii) ingroup loyalty, (iv) authority/respect and (v) purity/sanctity. These pillars relate to the standard moral dilemmas used in this study (see Figure 1 for examples) in the following way: They all involve killing in situations of inequity. The choice to be made always involves approving to kill an innocent party to save a larger number of individuals (utilitarian response). Alternatively, the participant can choose not to save the threatened individuals at the price of killing somebody (deontological response). Haidt and Graham (2010) advocated that this moral controversy is related to the feeling of disgust. According to this theory, disgust is a motivational force helping to keep away from what is (socially) bad, by triggering the cognitive processes related to purity/sanctity. The authors held that this foundational pillar is the basis of religious belief systems—the members of a particular confession agree on rules, values and conventions about what is good and bad. Other individuals of the same society/culture, not belonging to the religious community, may share these values (Greene, 2008). What differs is the explicitness with which they are present in a religious belief set (Haidt, 2007); ‘… religion has its effects, at least in part, through the substantive claims that it makes about what is right and what is wrong’ (Bloom, 2012, p. 195). Accordingly, we propose that religious indoctrination results in a belief set that promotes enhancement of the emotions related to the violation of the moral intuition of (i) purity/sanctity (avoidance of bad behavior) and (ii) harm and care (promotion of good behavior).

Hypotheses

Catholic and Atheist individuals are expected to differ in the subjective evaluations they make of moral dilemmas. Catholics will constitute a particularly deontological group, preferring to refrain from harming, whereas Atheist individuals’ cost-benefit considerations will make their moral judgments more utilitarian.

We do not expect our Catholic participants to make only deontological moral judgments. However, we hypothesize that the different moral judgments (deontological or utilitarian) will have different neural underpinnings in Catholics compared with Atheist individuals. Differential neural activity is expected to be found in (i) regions related to the representation of rules and social norms and (ii) regions that encode moral emotions (e.g. guilt), conflict and perspective taking for other individuals [Theory of Mind (ToM), empathy].

METHODS
Participants

A total of 25 right-handed female participants took part in the study, 13 Atheists and 12 Catholics (see Supplementary Data). Data from one Catholic participant were excluded due to technical problems during data collection. All participants had normal or corrected-to-normal vision. Participants reported no history of psychiatric or neurological disorders. All participants were university students or former university students (within 1 year from graduation) and native Spanish speakers. The experiment was approved by the University’s Ethical Committee, and all participants gave their informed consent before participation.

Control of participant characteristics

(1) Participants were classified into two groups—Catholics and Atheists—according to their scores in the Royal Free Interview for Spiritual and Religious Beliefs (King et al., 2001)—see Supplementary Data for details of the questionnaire. The questionnaire assesses different aspects of religiousness, allowing us to ensure that the Catholic participants showed (i) a stronger awareness of their actions (e.g. they held a ‘strong religious view of life’), (ii) an enhanced awareness of the rules of their religious value system (e.g. they considered ‘the practice of their belief in their daily life’ to be important) and (iii) a strong awareness of some external entity supervising their actions (e.g. they believed in ‘a spiritual power other than themselves that can influence the course of events’). All three components were crucial to the assumptions of our hypotheses regarding the sociocognitive components: perspective taking of other individuals [i.e. (i)], the representation of rules and social conventions of their religious value system [i.e. (ii)] and of moral emotions [i.e. (iii)].

Participants were recruited from the university community, religious youth clubs and local churches. We specifically did not include ‘professional’ religious participants (nuns, monks, priests, etc.) because this would have made our groups unequal in terms of life style and experience.

(2) As one of our hypotheses involved assumptions about brain activation related to emotions and empathy, participants were assessed in three standard empathy measures (Mehrabian and Epstein, 1972; Davis, 1983; Baron-Cohen and Wheelwright, 2004) to ensure that they did not differ with respect to their level of empathy (see Supplementary Data). Thus, differences in brain activity observed in emotion-processing networks could more reliably be attributed to the religious belief set than to interpersonal differences in empathy levels.

(3) Individuals’ so-called Thinking Style has lately been found to influence moral judgment of moral dilemmas (e.g. Bartels, 2008). Therefore, in a postexperiment session, participants were invited to complete the extensively used Need for Cognition Scale (Cacioppo et al., 1984). This scale measures whether an individual...
enjoys and often engages in deliberate reasoning about problems. Thus, the score of this instrument indicates an individual’s thinking style when faced with a complex problem. Seventeen of the 24 participants responded to our call (9 Catholics and 10 Atheists). Results showed that there was no significant group difference in the Thinking Style scores (see Supplementary Data). This enabled us to conclude that any effects of differences between the two groups would at least not be due to differences in general Thinking Style between the groups. See Table 1 for a summary of participant characteristics.

Materials and procedures

Stimuli—the dilemmas

We used a total of 48 standard moral dilemmas and 4 practice dilemmas. The dilemmas were partly those originally used by Greene et al. (2001, 2004) and optimized by Moore et al. (2008), and partly a number of additional stimuli that were created by the latter authors (Moore et al., 2008). There were 24 personal moral dilemmas (PMD) and 24 impersonal moral dilemmas (IMD). In each of these 2 categories, 12 of the 24 scenarios were self-beneficial and 12 were other-beneficial dilemmas. Among the dilemmas, some were scenarios with accidental harm (10 dilemmas: 5 personal and 5 impersonal) and some with instrumental harm (22 dilemmas: 11 personal and 11 impersonal). For a detailed description of the rationale behind the dilemma classification, see the Supplementary Data. Dilemma examples appear in Figure 1.

Procedure

Experimental sessions took place at the Hospital Clinica Rotger, Palma (Spain). After providing informed consent and completing the questionnaires regarding demographic data, religious affiliation and strength of religious belief, task instructions were given. The participants responded to the empathy questionnaires after the scanning session.

Dilemma presentation largely followed the procedure by Greene et al. (2001). Dilemmas were presented written on three subsequent

Fig. 1 Examples of personal and impersonal versions of two dilemmas. The Orphanage dilemma is a self-beneficial and instrumental moral dilemma, whereas the On the Waterfront dilemma is an other-beneficial and accidental death moral dilemma. Self-beneficiency is indicated by the fact that the proposed moral transgression involves that the protagonist’s life is also saved, as opposed to the case where the transgression does not imply any direct benefit to the protagonist. The Instrumentality of a transgression is designated by the fact that the protagonist uses the victim’s body in a certain way to save others (i.e. harm as a means). Conversely, accidental harm means that the victim dies as a undesired side effect of the act of saving the other individuals. See also Christensen and Gomila (2012) for further clarifications on moral dilemma conceptualization.
Table 1 Participant characteristics

<table>
<thead>
<tr>
<th></th>
<th>Catholics</th>
<th></th>
<th>Atheists</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>s.d.</td>
<td>Mean</td>
<td>s.d.</td>
</tr>
<tr>
<td>Age</td>
<td>23.82</td>
<td>3.31</td>
<td>23.21</td>
<td>3.62</td>
</tr>
<tr>
<td>Religiousness score</td>
<td>41.64</td>
<td>11.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Empathy scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Questionnaire of Emotional Empathy</td>
<td>49.80</td>
<td>6.29</td>
<td>29.75</td>
<td>10.31</td>
</tr>
<tr>
<td>(Mehrabian & Epstein, 1972)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Interpersonal Reactivity Index (Davis, 1983)</td>
<td>46.60</td>
<td>2.41</td>
<td>42.17</td>
<td>1.874</td>
</tr>
<tr>
<td>The Empathy Quotient (Baron-Cohen & Wheelwright, 2004)</td>
<td>46.20</td>
<td>2.36</td>
<td>44.75</td>
<td>3.62</td>
</tr>
</tbody>
</table>

black screens, followed by an interstimulus interval (a black screen with a fixation cross), which lasted for 14 s. Participants read the dilemma advancing from screen to screen by pressing a button of the response grip. The third screen presented the moral transgression. Participants were informed that they would be given a maximum of 46 s to read and respond to all three screens; 20 s for the first, 16 s for the second and 10 s for the question. If too slow, a note would appear Please try to read/answer faster, and the next trial was launched (data from missed trials were discarded). Participants responded using a response grip button device (left or right, counterbalanced) to indicate whether they considered the proposed moral transgression to be appropriate (= utilitarian response) or inappropriate (= deontological response). Seven null events lasting the whole trial length (≈60 s) were included to reduce stimulus onset predictability and to establish a baseline (Friston et al., 1999). Presentation of events (trials and null) was randomized.

Four practice trials familiarized the participant with the procedure. The epochs obtained here were later discarded as dummy trials. See the Supplementary Data for further details.

fMRI data acquisition

Functional images were acquired using a 1.5-T scanner (Siemens MAGNETOM Symphony). Blood oxygenation level dependence sensitive functional images were acquired using a single-shot gradient echo-planar imaging sequence (TR = 3700 ms, TE = 50 ms, field of view = 192 mm, matrix = 64 × 64 and flip angle = 90°). Each functional run consisted of 810 whole brain volumes comprising 36 transversal slices (voxel size 3 × 3 × 3 mm) axially aligned [anterior cingulate (AC)-posterior cingulate (PC)] with a gap between them of 0.75 mm. The acquisition was interleaved, bottom-up. An automatic shimming procedure was performed before each scanning session.

Following the experimental session, structural images were acquired sequence (TR/TE/TT inversion time 2140 ms/3.93 ms/1100 ms).

A full factorial design was created including the factors Group (Catholic vs Atheist), Dilemma (PMD vs IMD) and Response (appropriate vs inappropriate). We carried out three data examinations: (i) a whole-brain main effects analysis explored the average and main effects; (ii) a double dissociation informed of differential neural responses between the two groups for the two types of moral judgment: utilitarian (consenting harm) and deontological (refraining from harm); and (iii) an exploration using a priori established individual bilateral regions of interest (ROIs) masks [Wake Forest University Pickatlas tool; Maldjian et al., 2003] informed of activity related to moral judgment and (a) learning processes—precuneus, cingulate cortex; (b) abstract reasoning processes, conflict and memory—DLPFC and temporal pole (TP); and (c) moral emotions (e.g. guilt) and perspective taking of other individuals (ToM, empathy)—PFC and temporal regions such as insula, superior temporal sulcus (STS), and temporoparietal junction (TPJ).

For further details on the theoretical background of these ROIs, see ‘Introduction’ section. The coordinates of the activated regions are reported according to the Montreal Neurological Institute (MNI) system.

RESULTS

Behavioral results

Analysis 1: dilemma categories influence RT

To investigate the influence of the different types of dilemmas on the reaction time (RT) of our two experimental groups, we conducted a 2 × 2 × 2 repeated measures mixed factorial analysis of variance (ANOVA) using the within-group factors Personal Force (impersonal vs personal), Beneficiency (self vs others) and Evitability of Harm (avoidable vs inevitable). Religiousness (Catholic vs Atheist) was the between-group factor (Table 2, repeated measures (RM) ANOVA—main effects on RT (personal force, beneficiency, evitability and religiousness) for the statistics of the analyses included in this section).

Participants’ RT to respond to the dilemmas depended largely on the dilemma category and on the between-group factor Religiousness. Both groups judged PMD faster than IMD (main effect: P = 0.002). Moreover, the between-group factor Religiousness showed a trend effect on RT, indicating that Catholics were generally slower when making their moral judgment (p = 0.065). Furthermore, there was a significant interaction between Religiousness and Personal Force regarding the time needed to respond to PMD and IMD (p = 0.025).

Follow-up independent t-tests confirmed that, specifically, the Catholic participants needed longer to respond to IMD than the Atheists (p = 0.018). However, no such difference was found between the groups for PMD, see Table 2, tests to break down the interaction religiousness × personal force.

None of the other within-group factors yielded significant main effects. However, there was a significant interaction of Personal Force × Beneficency × Evitability × Religiousness. See the Supplementary Data for further analyses.

Analysis 2: religious individuals make more deontological moral judgments

A mixed ANOVA compared the two groups on the mean number of deontological and utilitarian responses they made in the two dilemma categories. Thus, the variables were number of PMD deontological responses, PMD utilitarian responses, IMD deontological responses and IMD Utilitarian responses. The Catholics made more deontological moral judgments than the Atheists, for whom utilitarian responses prevailed, irrespective of the type of dilemma, see Table 3 and Figure 2.

Analysis 3: RT depends on the type of response and on religiousness

Subsequently, we conducted an item analysis (Greene et al., 2001, 2004) to investigate whether the two groups differed in their RT when participants chose to make a utilitarian or a deontological moral judgment.

As we only found significant main effects for the factor Personal Force and Religiousness on the RT in our first analysis about the dilemma categories, we ignored the remaining dilemma categories hereafter. We conducted a 2 × 2 × 2 mixed repeated measures ANOVA with the factors Type of Dilemma (PMD vs IMD) and Type of Response (deontological vs utilitarian) as within-group factors and Religiousness (Religious vs Atheists) as the between-group factor.
There was a significant main effect of the Type of Response on the RT (\(P = 0.006\)). In general, participants were faster when making a deontological moral judgment than when making a utilitarian one. There was also a significant main effect of Religiousness, indicating that Catholics and Atheists differed in their RT (\(P = 0.029\)). The interaction between the Type of Response given (deontological or utilitarian) and Religiousness showed a trend effect (\(P = 0.07\)), indicating that the time needed to make a certain type of judgment differed between Catholic and Atheist participants, see Table 4, RM ANOVA—main effects on RT (type of dilemma, type of response and religiousness).

To break down this interaction, we performed independent t-tests. We found that the two groups differed when making a utilitarian moral judgment (\(P = 0.009\)), but not when making a deontological one (\(P = 0.209\)); see Figure 3 and Table 4, specific tests to break down religiousness–type of response interaction effect on RT.

Finally, we examined the within-group differences between the RT of deontological and utilitarian moral judgments for each group separately. For the Atheists, there were no significant main effects on their RT either for the Type of Dilemma or the Type of Response (Table 5).

However, for the Catholics, there was a significant main effect of the Type of Dilemma, indicating that the difference between PMD and IMD affected Catholics’ judgments (\(P = 0.008\)). Specifically, the time Catholics needed to judge a PMD was significantly shorter than when they judged an IMD (\(P = 0.01\)). See Table 6.

As this is an exploratory study, we decided to carry out a more detailed examination of the data to determine whether there might be an interaction trend of Type of Dilemma and the Type of Response given by the Catholic participants, in spite of the rather small sample size. Post hoc t-tests revealed that the time participants needed to make a utilitarian judgment of a PMD was significantly longer than when they made a deontological one (\(P = 0.01\)). However, for IMD, no such difference in RT was found, see Table 7.

Table 2 Main effects on RT and tests to break down the interaction Religiousness \(\times\) Personal Force

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SE</th>
<th>t-test (1,22)</th>
<th>(P)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM ANOVA—main effects on RT (personal force, beneficency, evitability and religiousness)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal (PMD)</td>
<td>4432.14</td>
<td>149.29</td>
<td>11.903</td>
<td>0.002</td>
<td>0.59</td>
</tr>
<tr>
<td>Personal (IMD)</td>
<td>4810.74</td>
<td>155.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiousness (between subjects)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholics</td>
<td>4845.29</td>
<td>209.45</td>
<td>3.758</td>
<td>0.065</td>
<td>0.38</td>
</tr>
<tr>
<td>Atheists</td>
<td>4345.59</td>
<td>192.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiousness (\times) Personal Force (^4)</td>
<td>5.764</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force (\times) Beneficency (\times)</td>
<td>6.661</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evitability (\times) Religiousness (^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effects not described in this table (main effects of beneficency, evitability and other interactions) were not significant.

\(^4\)See table ‘Specific tests to break down Religiousness \(\times\) Personal Force interaction’.

\(^2\)See tables ‘RM ANOVA Catholics’ and ‘RM ANOVA Atheists’.

Table 3 Types of responses (ANOVA): Catholics vs Atheists

<table>
<thead>
<tr>
<th>Type of dilemma</th>
<th>(F)-test (1,22)</th>
<th>(P)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMD deontological</td>
<td>9.247</td>
<td>0.006</td>
<td>0.54</td>
</tr>
<tr>
<td>PMD utilitarian</td>
<td>9.247</td>
<td>0.006</td>
<td>0.54</td>
</tr>
<tr>
<td>IMD deontological</td>
<td>5.927</td>
<td>0.023</td>
<td>0.45</td>
</tr>
<tr>
<td>IMD utilitarian</td>
<td>5.927</td>
<td>0.023</td>
<td>0.45</td>
</tr>
</tbody>
</table>

See Figure 2.
the precuneus than the atheists. However, Atheists only showed differential activity in the SPG (BA7), both when giving utilitarian and deontological responses. Figures 5 and 6 show uncorrected $P < 0.001$ results with an extent threshold of $k = 10$ voxels. The activation did not survive FWE correction.

Table 4 Main effects and interactions for the factors type of dilemma, type of response, and religiousness, and tests to break down the interaction religiousness × type of response | Mean | SE | t-test (1,22) | P | r |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RM ANOVA—main effects on RT (type of dilemma, type of response and religiousness)</td>
<td>Type of dilemma</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deontological</td>
<td>4447.211</td>
<td>160.373</td>
<td>9.334</td>
<td>0.006</td>
</tr>
<tr>
<td>Utilitarian</td>
<td>4888.861</td>
<td>173.605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiousness (between subjects)</td>
<td>Catholics</td>
<td>5021.161</td>
<td>217.677</td>
<td>5.492</td>
</tr>
<tr>
<td>Atheists</td>
<td>4314.911</td>
<td>208.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactions</td>
<td>Type of Response × Religiousness</td>
<td>3.548</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Specific tests to break down religiousness × type of response interaction effect on RT | Mean | SE | t-test (1,22) | P | r |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilitarian responses</td>
<td>Catholics</td>
<td>5378.133</td>
<td>250.794</td>
<td>-2.868</td>
</tr>
<tr>
<td>Atheists</td>
<td>4399.590</td>
<td>240.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deontological responses</td>
<td>Catholics</td>
<td>4664.190</td>
<td>231.679</td>
<td>-1.294</td>
</tr>
<tr>
<td>Atheists</td>
<td>4230.232</td>
<td>221.816</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No other main effects were significant.

*See Supplementary Table S3.

Analysis 6: deontological vs utilitarian moral judgments of PMD and IMD have different neural underpinnings in the two experimental groups

To test specific hypotheses regarding differential neural underpinnings between the groups during judgments of PMD and IMD, we performed planned contrasts on the ROIs established a priori by our hypotheses. These involved the cingulate cortex, insula, STS, TPJ, medial PFC and DLPFC.

We found that for utilitarian judgments of IMD, Catholics specifically recruited DLPFC and PCC (Figure 7), whereas the inverse contrast (differential activity of Atheists) yielded no suprathreshold effects. Furthermore, for deontological judgments of PMD, the Catholics selectively recruited left anterior cingulate cortex (ACC) and right STS (Figure 8). Neither the reverse nor any other comparisons yielded any suprathreshold effects. See Supplementary Data for an additional discussion of the neuroimaging results.

GENERAL DISCUSSION

This study examined the influence of an individual’s sentiments of religious affiliation on the neural activity observed during her moral judgment. Specifically, our hypotheses focused on the brain regions that have been previously associated with both moral judgment and the two aspects of the Roman Catholic belief system outlined in the introduction: harm/care and purity/sanctity.

At first glance, our behavioral results confirmed the DPHMJ (Greene et al., 2001). However, when contrasting the groups, it became clear that only the assumption about the emotional saliency of PMD (and thus faster judgments to such dilemmas) held for both experimental groups. Conversely, only the Catholic group showed the difference of faster deontological than utilitarian moral judgments; moreover, Catholics were slower than Atheists in making any kind of moral judgment. Accordingly, we propose that our results question...
the assumption of automaticity of deontological moral judgments of the DPHMJ—as they are modulated by an educationally acquired set of norms and conventions, for example, Religiousness.

Maybe this difference in findings is because Greene et al. (2001, 2004) did not control for Religiousness. We have tried to make sure that the experimental groups represented the extremes of a continuum between atheism and religiousness, present in the society the sample was drawn from. Thus, our sample was recruited in a Mediterranean coastal city in Spain, where religion is definitely part of the everyday life; yet, nowadays, the younger generations are rather free about the choice and strength of their religious beliefs. Therefore, our Catholic group contrasts very well with the atheist group. This issue clearly alerts (i) of the importance of controlling for participants’ level of religiousness in studies with moral judgment tasks and maybe also (ii) of the value of taking cross-cultural research—particularly also on moral judgment—seriously (Henrich et al., 2010).

Accordingly, we hold that our findings are more in accordance with the five Foundations account by Haidt and Graham (2007); at least as are concerned the two foundations harm/care and purity/sanctity. The Roman Catholic belief system seems to have an enhancing effect on the

Table 5 Separate RM ANOVA (Atheists) for the factors type of dilemma and type of response

<table>
<thead>
<tr>
<th>Type of dilemma</th>
<th>F-test (1,12)</th>
<th>P</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of dilemma</td>
<td>0.001</td>
<td>0.980</td>
<td>ns</td>
</tr>
<tr>
<td>Type of response</td>
<td>0.758</td>
<td>0.403</td>
<td>ns</td>
</tr>
</tbody>
</table>

No other main effects were significant.

Table 6 Separate RM ANOVA (Catholics) for the factors type of dilemma, type of response

<table>
<thead>
<tr>
<th>Type of dilemma</th>
<th>Mean</th>
<th>SE</th>
<th>Test</th>
<th>P</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMD</td>
<td>4568.21</td>
<td>235.26</td>
<td>F(1,10) = 11.038</td>
<td>0.008</td>
<td>0.72</td>
</tr>
<tr>
<td>IMD</td>
<td>5214.20</td>
<td>192.81</td>
<td>t(10) = −2.991</td>
<td>0.01</td>
<td>0.69</td>
</tr>
</tbody>
</table>

No other main effects were significant.

Table 7 Post hoc t-tests for utilitarian and deontological moral judgments of PMD

<table>
<thead>
<tr>
<th>Type of dilemma</th>
<th>Mean</th>
<th>SE</th>
<th>t-test (10)</th>
<th>P</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilitarian to PMD</td>
<td>5246.42</td>
<td>277.49</td>
<td>3.013</td>
<td>0.01</td>
<td>0.69</td>
</tr>
<tr>
<td>Deontological to PMD</td>
<td>4356.87</td>
<td>259.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMD comparisons</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Whole brain analysis

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Region of activation</th>
<th>Cluster size</th>
<th>Lat</th>
<th>Brodmann Areas</th>
<th>Z-score</th>
<th>MNI coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average effect of condition</td>
<td>Calcarine sulcus and other primary visual cortices</td>
<td>4552</td>
<td>B</td>
<td>17</td>
<td>Inf</td>
<td>−6 −85 −5</td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
<td>1270</td>
<td>B</td>
<td>Inf</td>
<td>−39 −79 −35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precentral--Hippocampus--Parahippocampal gyrus</td>
<td>1200</td>
<td>B</td>
<td>37, 27, 29</td>
<td>−21 −46 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prefrontal and frontal areas ACC</td>
<td>4370</td>
<td>B</td>
<td>9, 10, 24, 32, 46,</td>
<td>−24 50 28</td>
<td></td>
</tr>
<tr>
<td>Main effect of Catholics-Atheist</td>
<td>Precentral</td>
<td>25</td>
<td>B</td>
<td>30</td>
<td>5, 8</td>
<td>−3 −55 19</td>
</tr>
<tr>
<td></td>
<td>Superior Medial Frontal Cortex</td>
<td>11</td>
<td>B</td>
<td>10</td>
<td>5, 45</td>
<td>3 62 7</td>
</tr>
</tbody>
</table>

F-tests (P < 0.05 FWE corrected). Whole-brain analysis for the main and average effects. Baseline was established by the inclusion of null events in which participants saw a blank screen and did not do anything related to the task (see Methods). Cluster size in voxels. Lat indicates laterality (B = bilateral, R = right, L = left). ‘Inf’ means that value tends to infinite.

Degrees of freedom = (1,0, 76.6).
integrative representation of social perceptual, functional and structured-event knowledge. This knowledge is necessary to make a moral judgment in accordance with what one considers to be acceptable behavior.

(3) Catholics and Atheists appear to process differently the emotional saliency of PMD and the abstract nature of IMD. Although we had ensured by means of the questionnaire that the groups did not differ either in their general empathy levels or in Thinking Style, they did report diverging mindsets regarding the importance of practicing dogmas. Also, the speed of their deontological moral judgments indicated an enhanced perceived emotional saliency toward such dilemmas. The enhanced activity in ACC and STS in Catholics during deontological moral judgments of PMD might also be related to their religiousness. The enhanced tendency to perspective taking in Catholics (ToM-related processing; STS activity) appeared to make them anticipate more strongly the negative affect potentially resulting from consenting a moral transgression that would harm another person (empathy-related processing; ACC activity). Catholics’ utilitarian moral judgment of IMD was associated with differential neural activity in DLPFC and PCC. This indicates that, for such judgments, Catholics incurred more strongly in abstract reasoning processes, a fact reflected at the behavioral level with longer RTs for such judgments (correlating with activity in DLPFC). Utilitarian moral judgments may also have involved a strong feeling of awareness of one’s own

Table 9 t-Tests (P < 0.05 FWE corrected)

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Region of activation</th>
<th>Cluster size</th>
<th>Lat</th>
<th>Brodmann areas</th>
<th>Z-score</th>
<th>MNI Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catholic>Atheist</td>
<td>Precuneus (PCC)</td>
<td>35</td>
<td>B</td>
<td>30</td>
<td>5, 92</td>
<td>−3 −55 19</td>
</tr>
<tr>
<td></td>
<td>Middle temporal pole</td>
<td>10</td>
<td>R</td>
<td>20</td>
<td>5, 82</td>
<td>39 11 −38</td>
</tr>
<tr>
<td>Atheist>Catholic</td>
<td>Superior parietal gyrus</td>
<td>10</td>
<td>L</td>
<td>7</td>
<td>5, 37</td>
<td>−27 −64 64</td>
</tr>
</tbody>
</table>

Cluster size in voxels. ‘Lat’ indicates laterality (B = bilateral, R = right, L = left). Degrees of freedom = (1.0, 76.0).

Fig. 4 Comparison Catholics vs atheists. Catholic > Atheist contrast (red) reveals activity in right Temporal Pole, middle Superior Frontal Gyri (BA10), ventral portion of the Precuneus and left Posterior Cingulate Cortex. Atheist > Catholics contrasts (blue) reveals left superior parietal gyrus activity.

Fig. 5 Activity related to deontological responses for Catholic (violet) and atheist (green) participants.

Fig. 6 Activity related to utilitarian responses for Catholic (violet) and atheist (green) participants.
actions and interactions with the external world (activity in PCC) (Legrand and Ruby, 2009).

(4) The repeatedly found enhanced neural activity in the DLPFC in Catholics deserves a closer look. The DLPFC has been proposed to be part of a network that encodes moral emotions such as shame, guilt and compassion and, specifically, embarrassing social norm violations (Berthoz et al., 2002, 2006; Moll et al., 2007; see also Moll and Schulkin, 2009, for a review). Furthermore, it plays a key role in knowledge retrieval based on learned associations of self-perceived learned behavior when applied to morally ambiguous situations. Also, it responds to the adherence to socially and personally acceptable beliefs and norms (reviewed in Haidt, 2007; Forbes and Grafman, 2010).

Moral emotions and social norms guide our behavior to be morally and socially acceptable within the standards of a given community (Moll et al., 2005, 2008b; Zahn et al., 2009). Norms serve as an educationally acquired set of ‘ought’ codes—possibly sustained by the five foundational moral intuitions (Haidt and Graham, 2007)—whereas moral emotions serve as an internal motivational force for the achievement of these standards (see the motivational approach by Moll et al., 2008a). However, the elicitation of such moral emotions is said to be especially dependent on the social evaluation other people may make of an individual’s actions (Tangney et al., 2007). Catholics reported strongly believing in a spiritual power or force other than themselves, which makes Catholics diverge from Atheists in their moral judgment.

Of course, our study has the common features of any exploratory study. Without doubt, it needs replication with a larger sample, including both male and female participants, to make results generalizable. We operated with a relatively small sample size, which makes statistical significance hard to achieve. Furthermore, two of our pairwise comparisons in the ‘Behavioral results’ section showed only trend effects (see behavioral results sections ‘Analysis 1: dilemma categories influence RT’ and ‘Analysis 3: RT’ depends on the type of response and on religiousness’) and the results of one fMRI analysis (‘fMRI results’ section, above) did not survive FWE correction.

In spite of the danger of incurring in a type I error (false positives), we chose to report also trend effects because (i) this is an exploratory study, (ii) our behavioral results match findings of a previous study by our group (Christensen, Gut and Cela-Conde, submitted for publication) and (iii) the regions we found active have repeatedly been reported to be involved in moral judgment tasks in other studies. The same applies for the use of anatomical ROIs. We chose to run such an approach to reduce the severity of correction for multiple tests. However, we believe that the danger of false discovery rate (Poldrack, 2007) is minimized because of extensive work already available supporting the selection of those particular regions stipulated by our hypotheses.

Another criticism might be related with personality trait issues. They could be the cause for the differences in the assessment of moral dilemmas between Catholics and Atheists. As we have not controlled for personality traits, we just hold that membership in a religious community constitutes a condition that has the potential to modulate the behavioral and neural expression of basic moral intuitions in a moral judgment. To disentangle the specific role of personality traits from religious indoctrination in moral judgment remains an endeavor for future testing.

Finally, to answer the initial question by Bloom (2012): Yes, psychology urgently needs to address the phenomenon ‘religion’ because it has demonstrable effects on the human mind, reflected at both behavioral and neural levels.

SUPPLEMENTARY DATA
Supplementary data are available at SCAN online.

REFERENCES

