Abstract

Research on the genetic epidemiology of schizophrenia is briefly and selectively reviewed. The following three salient features of schizophrenia that represent challenges to the design of linkage studies are identified: (1) The analysis of twin and family data has consistently failed to identify a single major gene effect upon schizophrenia risk; (2) the ascertainment of multiplex families does not guarantee the sampling of families who are segregating for the major gene even if a major gene effect exists; and (3) environmental influences appear to play an essential role in the etiology of at least some forms of schizophrenia. The implications of these features for the design of linkage studies in schizophrenia are discussed.

Identifying the genetic mechanisms that underlie individual differences in human behavior remains one of the most significant problems facing the human geneticist. Progress has been impeded by the complexity of the behavioral phenotype. It is little wonder that the advent of the application of molecular genetic methods to human behavior (Goring 1986) and the recent successes in linking behavioral conditions including affective psychoses (Egeland et al. 1987), reading disability (Smith et al. 1983), Alzheimer's disease (St. George-Hyslop et al. 1987), and schizophrenia (Sherrington et al. 1988) to specific regions of the genome have given rise to much optimism. Clearly the race has begun to apply molecular genetic techniques to the study of human behavior. As behavioral geneticists, we have long been interested in the way knowledge of a genetic influence will bring about a better understanding of the development of psychopathology and eventual rational intervention and even prevention. It is an especially appropriate time to consider whether behavioral pathology is best treated as other human genetic disorders (i.e., more grist for the human geneticist's mill), or whether the unraveling of genetic influences on behavior will require new and unique research approaches.

Throughout its development, behavioral genetics has relied heavily on the biometrical approach, the Galtonian paradigm. This approach, although statistically sophisticated, has been widely criticized for its inability to characterize the mechanisms of genetic influence (e.g., Vogel and Motulsky 1986). Over the past 22 years, we have engaged in biometrical analyses of schizophrenia twin and family data (Gottesman and Shields 1967; Rao et al. 1981; McGue et al. 1983, 1986). Although we agree that these analyses do not allow us to identify the underlying genetic processes, we believe they do help us to understand the genetics of schizophrenia. Indeed, as the field embarks upon intensive molecular genetic studies of schizophrenia, the results of our biometrical analyses may have implications for the probable success of alternative strategies for identifying single gene effects on schizophrenia. We consider those results and some of their implications here.

For definitions of technical terms, see glossary on p. 366.

Reprint requests should be sent to Dr. M. McGue, Dept. of Psychology, University of Minnesota, 75 East River Rd., Minneapolis, MN 55455.
Genetic Epidemiology of Schizophrenia

The most powerful and consistent predictor of risk for schizophrenia is being an identical twin or first-degree relative of a schizophrenic patient (Gottesman et al. 1982; Eaton 1985). Table 1 gives estimated lifetime risks (i.e., age-corrected values) for developing schizophrenia among the relatives of schizophrenic probands pooled from systematic studies undertaken in Western Europe since 1920 (for a complete description of how the data were compiled, see Slater and Cowie [1971] and Gottesman et al. [1982]). Values for a broader definition, including "probable schizophrenia," are about 25 percent higher than those given in the table. With the exception of the twin data, where a large correlation in age at onset as well as continued followup obviates the need, all risks have been adjusted for variable age of onset using variations of the Weinberg method (Gottesman et al. 1982).

There is a strong association between the magnitude of the risk in the relative and the degree of genetic relationship to the proband. The most distinctive features of this association are the monozygotic (MZ) twin concordance rate and the risk to the offspring of two schizophrenic parents, both of which are large relative to the risks among other family members. The MZ rate is approximately five times the rate among first-degree relatives, which in turn is approximately 2½ times the rate among second-degree relatives. The association between familial risk and proportion of genes shared with the index case is approximated by an exponential decay function (figure 1). Alternative hypotheses about the genetic transmission of schizophrenia are distinguished by their ability to account for this essential epidemiological association.

Twin, adoption, and family studies are consistent in indicating that the familial aggregation of schizophrenia is accounted for largely, if not entirely, by genetic factors (Rosenthal 1972; McGue et al. 1986). Nonetheless, the MZ twin concordance rate is substantially less than 100 percent, and thus (nonfamilial) environmental factors—be they prenatal, perinatal, or sociocultural—play a significant role in the etiology of at least some forms of schizophrenia. The existence of environmental influences obscures the mechanism of genetic transmission, resulting in continued debate as to whether schizophrenia is a single gene disorder, multifactorially transmitted, or etiologically heterogeneous (Faraone and Tsuang 1985). This is not a purely academic concern, as the likelihood of identifying single gene effects on schizophrenia risk depends upon the mode of transmission of the disorder.

Table 1. Rates of definite schizophrenia among the relatives of schizophrenic cases

<table>
<thead>
<tr>
<th>Familial relationship</th>
<th>BZN</th>
<th>% Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offspring of 2 schizophrenic parents</td>
<td>134</td>
<td>36.6</td>
</tr>
<tr>
<td>Monozygotic twins</td>
<td>106</td>
<td>44.3</td>
</tr>
<tr>
<td>Dizygotic twins</td>
<td>149</td>
<td>12.1</td>
</tr>
<tr>
<td>Siblings</td>
<td>7523</td>
<td>7.3</td>
</tr>
<tr>
<td>Offspring of 1 schizophrenic parent</td>
<td>1678</td>
<td>9.4</td>
</tr>
<tr>
<td>Half-siblings</td>
<td>442</td>
<td>2.9</td>
</tr>
<tr>
<td>Nieces or nephews</td>
<td>3965</td>
<td>2.7</td>
</tr>
<tr>
<td>Grandchildren</td>
<td>739</td>
<td>2.8</td>
</tr>
<tr>
<td>First cousins</td>
<td>1600</td>
<td>1.6</td>
</tr>
<tr>
<td>Spouses</td>
<td>399</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*BZN gives the age-adjusted sample size (Gottesman et al. 1982)

Table 2 gives the parameterization of the GSL model in terms of the frequency of the schizophrenia-promoting allele (a) and the penetrances of the three genotypes (fAA, fAa, and faa)
Figure 1. Lifetime morbid risks among the relatives of schizophrenic cases observed (empiric) and expected under a multifactorial threshold (MFT) model with 80% heritability and the generalized single locus model (GSL) proposed by Matthisse et al. 1986 as a function of proportion of genes shared with the proband.

Table 2. Parameterization of the generalized single locus model

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Frequency</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>q^2</td>
<td>$2q(1-q)$</td>
<td>$(1-q)^2$</td>
</tr>
<tr>
<td>Penetrance</td>
<td></td>
<td>f_{AA}</td>
<td>f_{Aa}</td>
<td>f_{aa}</td>
</tr>
</tbody>
</table>

Both the parsimony of the model and the fact that a unitary genetic etiology for schizophrenia would enhance the promises of success for molecular genetic strategies make the GSL model attractive. Nonetheless, the GSL model has repeatedly failed to account for the observed pattern of familial risk in schizophrenia (Elston and Campbell 1970; Kidd and Cavalli-Sforza 1973; Elston et al. 1978; O'Rourke et al. 1982; Tsuang et al. 1982; Baron 1986; McGue et al. 1986). This failure stems directly from the inability of the GSL model to predict an exponential relationship between familial risk and degree of the relationship with the proband.

James (1971) has shown how precise quantitative predictions of familial risks can be determined under a GSL model. The risk to relatives of a given class (K_r) can be expressed as a function of three parameters derivable from the penetrances and gene frequency of the GSL model: the population prevalence of the disorder (K_p), the additive genetic variance (V_a), and the dominance genetic variance (V_d)

$$K_r = K_p + \frac{\mu_1 V_a + \mu_2 V_d}{K_p}$$

where μ_1 and μ_2 are the probabilities that the proband and the relative share, respectively, one or two alleles at a locus identical by descent.

In the absence of dominance (as appears to be the case for schizophrenia, where the risk to the siblings is not greater than the risk to the offspring of a schizophrenic parent), predicted familial risk under the GSL model is given by a linear function of proportion of genetic overlap between the relative and the proband. That is, in the absence of dominance, equation 1 is reduced to

$$K_r = K_p + \frac{V_d}{K_p} \mu_1$$

This linear prediction is in sharp contrast to the observed exponential relationship. Along with the empiric risks, figure 1 plots the familial risks predicted by a recently.
A simple hypothetical example should serve to illustrate. Suppose that the transmission of schizophrenia was due to two separate single gene defects either of which alone could produce the disorder. The first is a rare completely penetrant (i.e., individuals who inherit at least one copy of the gene are affected regardless of status at any other locus) dominant gene with a gene frequency of 0.002. The second is a common incompletely penetrant gene with a frequency of 0.03 and a penetrance vector of \(f_{AA} = 0.20, f_{Aa} = 0.10 \) and \(f_{aa} = 0.201 \). Risks generated under such a heterogeneous model are approximately linearly related to degree of genetic relatedness between the proband and the relative. The expected MZ concordance rate is 0.391 (a value not that dissimilar from observed values), but the risk to the offspring of schizophrenic individuals is 0.201 (a value clearly greater than those observed). The failure of simple single gene models to account for schizophrenia family data complicates the search for single gene effects. This failure does not exclude the possibility that schizophrenia may, in some cases, be due to a rare highly penetrant gene effect. Rather it excludes the possibility that schizophrenia is a heterogeneous mixture of single gene effects.

Multiple Gene Models

Multiple gene models do not share the empirical shortcomings of the GSL model. Although many alternative multiple gene models have been proposed, we will focus upon the two most widely applied—the multifactorial threshold (MFT) and mixed models. Under the MFT model, genetic factors are assumed to be polygenic. That is, a large number of genes, each of small and equal effect, combine additively with the effects of other genes and environmental factors to influence schizophrenia liability. The qualitative phenotype (here a diagnosis of schizophrenia) is assumed to arise when an individual’s combined liability exceeds some threshold value along the unobserved liability continuum (Falconer 1965; Gottesman and Shields 1967).

The MFT model does an excellent job in accounting for the distinctive pattern of familial risk in schizophrenia (McGue et al. 1983). Figure 1 gives the predicted rates of schizophrenia under an MFT model that attributes all familial transmission to polygenic factors with a multifactorial heritability of 80 percent, with the remaining 20 percent of the liability variance being accounted for by nonfamilial environmental effects (McGue et al. 1985). Although the predicted MZ concordance rate is somewhat low, this model is statistically consistent with the observed familial rates and, more important, produces a risk function with the characteristic exponential decline.

Despite its predictive adequacy, there is a general reluctance to accept the MFT model as an explanation for the transmission of schizophrenia. This reluctance stems, perhaps, from the failure to identify specific genetic and environmental contributors to the assumed multifactorial liability. Additionally, strict polygenic inheritance (i.e., many genes all of small effect) would likely preclude, for the near future, attempts at identifying single gene effects on schizophrenia risk through molecular genetic approaches. However, the fit of the MFT model does not preclude (1) the existence of a single major gene whose effect upon schizophrenia risk is large relative to the effects of other (poly)genes, (2) the possibility of rare single gene disorders that give rise to schizophrenia, or (3) a tractable
MFT model of a limited number of polygenes (3, 4, or 5) each with a "subcomponent effect" on schizophrenia (cf. Wright 1934; Thoday 1967). Molecular genetic strategies could, presumably, be tailored for each of these possibilities.

Meehl (1972a, 1972b) was the first to suggest that both a major gene and polygenes play a role in the etiology of schizophrenia. Under Meehl’s theory, inheritance of a single gene gives rise to a neural integrative deficit termed schizotaxia that is expressed at the personality level as schizotypy. Expression of clinical schizophrenia among individuals who inherit the single gene defect is postulated to be a function of status on a host of polygenically and environmentally influenced potentiators including anxiety, anhedonia, and social introversion.

The type of model proposed by Meehl has been termed the mixed (i.e., mixed major and polygenes) model by the human geneticists Morton and MacLean (1974), who also developed analytical procedures for fitting the model to family data. Although the procedures outlined by Morton and MacLean can be used, in theory, to identify major gene effects against a polygenic background, in practice, the analysis of qualitative family data under the mixed model has yielded equivocal results. There have been three mixed model analyses of schizophrenia family data (Carter and Chung 1980; Risch and Baron 1984; Vogler et al., in press). In all three cases the multifactorial model that included only polygenic effects could not be rejected in favor of a mixed model that included both a single major gene and polygenic effects. This failure may result from a lack of statistical power or to an absence of a single major gene effect on schizophrenia. With the given data, it is difficult to resolve the choice between these two possibilities, although the repeated failure to identify single major gene effects on schizophrenia despite relatively large family studies suggests that if single gene effects exist they may be of modest magnitude only.

Simulation Studies

To identify the characteristics of mixed single gene/polygene models that generate accurate predictions of familial risk, we recently completed a simulation study (Gottesman and McGue, in press). In that study, familial risks under 275 different models were computed and compared with observed schizophrenia risks. Family data were generated under a general model that allowed for the following three additive contributors to schizophrenia liability: (1) a major gene component with two alleles (A and a) at a single locus in Hardy-Weinberg equilibrium, (2) an additional polygenic component that was assumed to be normally distributed with a constant variance for the three genotypes (AA, Aa, and aa), and (3) a nonfamilial environmental component, also assumed to be normally distributed with a constant variance. ‘Familial environmental effects, for which there is little empirical evidence (McGue et al. 1985), were not modeled in the simulation. The penetrances of the three genotypes were ordered according to $f_{AA} > f_{Aa} > f_{aa}$ with the heterozygote penetrance, f_{Aa}, constrained to equal the average of the penetrances of the two homozygotes as is expected when there is no dominance variance at the single locus. In all cases, the lifetime prevalence of schizophrenia was fixed at 1.0 percent.

Familial risks were functions of the following three (input) parameters: (1) f_{AA}, the penetrance of the most frequently affected genotype; (2) s, the percentage of schizophrenic cases who do not have any copies of the "schizophrenia gene" (i.e., the proportion of schizophrenic cases with the aa genotype, termed the proportion of sporadic cases); and (3) h^2, the residual polygenic heritability (i.e., the proportion of liability variance due to polygenic factors after the major gene effect has been partialled out).

Table 3 gives illustrative findings from these simulations. Three general conclusions were drawn:

1. When the penetrance of the most frequently affected genotype was high (f_{AA} equal to 0.4), predicted familial risks were inconsistent with observed risks unless both the percentage of schizophrenic cases without the major gene was high ($s > 0.60$) and the residual heritability was large ($h^2 > 0.60$). Put another way, if there exists a single highly penetrant major gene for schizophrenia, simulations of family data suggest that few schizophrenic cases possess it. This is illustrated in table 3 by the comparison of the three inconsistent models numbered 5, 6, and 7 with the consistent model numbered 2.

2. When the penetrance of the most frequently affected genotype was low ($f_{AA} < 0.2$), predicted familial risks were inconsistent with observed risks unless the residual heritability was large ($h^2 > 0.60$). Put another way, a low-penetrant gene is consistent with schizophrenia family data only when there is also a substantial polygenic effect. This is illustrated in table 3 by the two consistent models numbered 1 and 3 and the two inconsistent models numbered 8 and 9.

3. A pure MFT model with large
heritability \((h^2 = 0.80)\) yields familial risks consistent with observed risks. This is illustrated by the consistent model numbered 4 in Table 3.

These simulations suggest that three alternative classes of genetic models are consistent with the genetic epidemiology of schizophrenia: (1) a heterogeneity-like model where the minority of schizophrenic individuals inherit a highly penetrant but low frequency gene (the gene frequency for model number 2 was 0.018), while the majority are affected because of high multifactorial loading; (2) a gene of modest-effect model where a low penetrance (about 10 percent), moderately prevalent (gene frequency for model 3 was 0.097) gene contributes along with a sizeable multifactorial component to schizophrenia risk; (3) a pure MFT model. Any one of these models could account for the failure of mixed model analyses of schizophrenia family data to identify a single major gene effect.

Ascertainment Strategies

The results of our simulations suggest that the existence of a single major gene effect is not inconsistent with the observed schizophrenia family data, although the magnitude of this effect on overall risk may not be great. If a single major gene exists, the question remains as to how best to sample pedigrees of families for linkage studies that are informative with respect to the major gene. One popular, and seemingly sensible, strategy for identifying families for intensive molecular genetic study is to sample "loaded pedigrees" (i.e., so-called multiplex families with a large number of affected individuals). We were interested in determining, for the four models found to generate risk rates consistent with the observed familial rates, the extent to which (1) families with multiple affected members are expected to occur and (2) multiplex ascertainment schemes succeed in enriching the sample with families that are segregating for the major gene.

For each of the four models, 50,000 nuclear families consisting of an index member (not necessarily affected) and possibly a spouse and up to 10 children were generated.

Table 3. Illustrative results from the mixed model simulation of schizophrenia

<table>
<thead>
<tr>
<th>Model</th>
<th>Derived parameters</th>
<th>Predicted risks to relatives of schizophrenic cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input parameters</td>
<td>% total variance of</td>
<td>MZ</td>
</tr>
<tr>
<td>#</td>
<td>(f_A)</td>
<td>(s)</td>
</tr>
<tr>
<td>Consistent models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Inconsistent models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td>0.10</td>
<td>0.025</td>
</tr>
<tr>
<td>9</td>
<td>0.10</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Note — \(f_A\) is the penetrance of the most frequently affected genotype, \(s\) is the proportion of schizophrenic cases who do not carry the major gene, and \(h^2\) is the residual multifactorial heritability. MZ = monozygotic twin; 1st = first-degree relative; 2nd = second-degree relative; 3rd = third-degree relative. Table from Gottesmann & McGue (in press).
according to the parameters of that model. Probability of marriage and number of offspring were chosen to reflect demographic features of the U.S. adult population. No adjustment was made for the reduction in fertility known to be associated with schizophrenia (Erlenmeyer-Kimling 1978; Vogel 1979; Ødegård 1980). Average number of offspring was 2.22 (SD = 1.4, range = 0-6).

Table 4 gives the distribution of number of affected individuals among families with at least one affected member. Two features of table 4 warrant comment: (1) All four models predict that in a large percentage of cases schizophrenic patients will be the only affected members of their nuclear family. This prediction is in accord with the distribution of number of affected family members observed in large family studies (e.g., Lindelius 1970). (2) Although rare, pedigrees with multiple affected members are expected under all four models of transmission. Although expected under highly penetrant single gene transmission, the observation, especially under uncertain ascertainment, of loaded pedigrees does not allow unequivocal inference of mode of transmission. Indeed, of the total of 200,000 nuclear families generated, only two contained as many as five affected members. One family was generated under model number 3, a mixed model with high multifactorial heritability, and the other under model number 4, a pure MFT model.

Table 5 gives the sample proportions of (1) affected individuals who carry no copies of the schizophrenia-promoting gene (P[G-/S+]) and (2) normal individuals who carry at least one copy of the schizophrenia-promoting gene (P[G+/S-]) under alternative sampling schemes for each of the three models for which there is a major gene effect. These proportions can be interpreted loosely as error rates under the alternative ascertainment schemes; that is, the chance that an affected individual in the sample does not have the gene and the chance that a normal individual does. As is evident from table 5, multiplex sampling strategies are not necessarily expected to enrich the sample for schizophrenic cases possessing the gene under any of the three models. Only for model 3, where the gene frequency is high but the penetrance low, are most sampled families expected to be segregating the major gene. Nonetheless, in this case a significant proportion of unaffected individuals also possess the gene, and this "false positive" rate is not improved through multiplex sampling.

Role of the Environment

The existence of environmentally induced schizophrenic-like conditions (Davison 1987) as well as MZ twin concordance rates substantially less than 100 percent, prompts the question: Is the influence of the environment on schizophrenia due primarily to environmentally induced phenocopies of the disorder, or is it that environmental effects combine multifactorially with an underlying genetic diathesis? We note that the popular distinction between sporadic and familial forms of psychopathology presumes that a major role of the environment is to induce nontransmitted forms of the disorder (see, however, Eaves et al. [1986] for a critical evaluation of this distinction as applied in genetic epidemiology).

Gottesman and Bertelsen (in press) evaluated schizophrenia risk among the offspring of Fischer's concordant and discordant twins. Relatively low rates of schizophrenia are expected among the offspring of Fischer's concordant and discordant twins. Relatively low rates of schizophrenia are expected among the offspring of discordant MZ twins if discordance among the genetically identical parents is due largely to

Table 4. Distribution of number of affected nuclear family members under 4 alternative models for schizophrenia

<table>
<thead>
<tr>
<th>Model input parameters</th>
<th>Number (%) of affected family members per family</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>f_{AA}</td>
<td>s</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.025</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note.—See note to table 3 for abbreviations.

1Total gives the total number of nuclear families, out of the 50,000 generated, with at least 1 schizophrenic member.
Table 5. Proportion of schizophrenic cases without the major gene (P(G-/S+)) and proportion of normals with the major gene (P(G+/S-)) under 3 alternative ascertainment schemes

<table>
<thead>
<tr>
<th>#Affected family members</th>
<th>Model #1</th>
<th>Model #2</th>
<th>Model #3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(G-/S+)</td>
<td>P(G+/S-)</td>
<td>P(G-/S+)</td>
</tr>
<tr>
<td>≥ 1</td>
<td>0.748</td>
<td>0.089</td>
<td>0.879</td>
</tr>
<tr>
<td>≥ 2</td>
<td>0.658</td>
<td>0.089</td>
<td>0.789</td>
</tr>
<tr>
<td>≥ 3</td>
<td>0.652</td>
<td>0.028</td>
<td>0.542</td>
</tr>
</tbody>
</table>

environmentally induced phenocopies. Table 6 gives the essential findings from this study. Although the small sample allows only preliminary and cautiously drawn conclusions, the pattern of offspring risk is striking. For the discordant MZ twins, the rate of schizophrenia-like psychosis is similar among the offspring of the affected and the unaffected twins, and both rates are comparable to the overall risk to the offspring of a schizophrenic parent (table 1). In contrast, for the discordant DZ twins, the rate of schizophrenia-like psychosis is significantly higher among the offspring of the affected twin than among the offspring of the unaffected twin. Furthermore, the rate among the offspring of the affected DZ twins is comparable to the rate among the offspring of schizophrenic patients, while the rate among the offspring of the unaffected cotwins is comparable to the risk among the second-degree relatives of schizophrenic patients (table 1).

These data suggest that the discordance among the MZ twins cannot be attributed wholly to the existence of nontransmissible forms of schizophrenia. Apparently, the expression of schizophrenia depended upon both an inherited genetic diathesis, which was transmitted regardless of whether the diathesis was phenotypically expressed, and exposure to environmental stressors, to which the twins are differentially exposed. The possibility that the expression of schizophrenia might depend upon exposure to requisite environmental triggers would seem to complicate, but certainly not preclude, genetic linkage studies which are highly sensitive to the existence of "false negatives" in the family.

Table 6. Schizophrenia and schizophrenia-like psychosis in offspring of discordant twins

<table>
<thead>
<tr>
<th>Parent status</th>
<th>Number</th>
<th>Affected</th>
<th>MR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monozygotic sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected twin</td>
<td>14</td>
<td>1</td>
<td>10.0 ± 9.0</td>
</tr>
<tr>
<td>Unaffected twin</td>
<td>24</td>
<td>4</td>
<td>17.4 ± 7.7</td>
</tr>
<tr>
<td>Dizygotic sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected twin</td>
<td>13</td>
<td>1</td>
<td>8.3 ± 7.6</td>
</tr>
<tr>
<td>Unaffected twin</td>
<td>52</td>
<td>1</td>
<td>2.1 ± 2.1</td>
</tr>
</tbody>
</table>

Note.—Affected gives the total number of offspring affected with either schizophrenia or a schizophrenia-like psychosis. MR gives the estimated lifetime morbid risk using the Kaplan-Meier age-correction procedures. Table from Gottesman and Bertelsen (in press).

Discussion and Conclusion

Alternative approaches to identifying single major gene effects on schizophrenia will be constrained, encouraged, or defeated by salient features of the genetic epidemiology of this complex disorder. Here we reviewed three such features, all of which have significant implications for designing linkage studies of schizophrenia.

1. Nobody has ever been able to demonstrate statistically that a single major gene accounts for a large share of the overall risk for schizophrenia. We suggest that this reflects more about the nature of this complex disorder than it does about limitations in the statistical procedures. Approaches premised upon the hypothesis that schizophrenia is a unitary single gene disorder run counter to a vast amount of empirical research that suggests otherwise. At the least,
such approaches need to be justified relative to their more empirically attractive alternatives.

Single gene effects on schizophrenia risk may exist. Our simulations suggest that if they do, they are likely to be the result of either a highly prevalent gene with a very low penetrance or a very low prevalent gene with a high penetrance. In either case, the contribution to overall schizophrenia risk is modest. For example, Huntington’s disease (HD) is often misdiagnosed as paranoid schizophrenia; about 20 percent of HD cases present with paranoid schizophrenic phenotypes. HD is quite rare in the population with an incidence of 5 per 100,000. From the careful total population study in southern Sweden by Essen-Möller et al. (1956) that used indepth interviews by psychiatrists with every inhabitant, we obtain a lifetime risk of 139 per 10,000 for schizophrenia. We can now answer the question, what proportion of schizophrenia-like psychoses are actually caused by what we now know to be a mutated dominant gene on chromosome 4 leading to HD? The answer is found by dividing the two population values or 5/100,000 by 139/10,000 and then taking 20 percent to get those HD cases who are, in this instance, “genocopies” of schizophrenia. The result of the calculations is that 7 in 10,000 schizophrenic cases have this “major gene for schizophrenia-like psychosis” and the gene would be identified by studying such special pedigrees with restriction fragment length polymorphisms (RFLPs) and a lucky choice of chromosome 4 as a starting place.

2. Ascertainment schemes aimed only at identifying “loaded pedigrees” may be useful, but then again they may not. Obviously, linkage studies require loaded pedigrees to provide powerful tests for single gene effects. Nonetheless, multiplex families are expected under GSL and MFT transmission. This may leave the molecular geneticist somewhat uneasy in claiming that the family he or she is expending great effort on happens to be a family segregating for the major gene. It is notable in this regard that the linkage studies for mental disorder that are currently available, whether for schizophrenia or affective psychoses, were conducted without defining a sampling framework. We have no way of knowing how many families in the general population were, in effect, screened to find the interesting multiplex families used to obtain the significant lod scores. Under such conditions, the linkage studies resemble the important data available from individual case histories provided by such pioneers as Freud, Kraepelin, and E. Bleuler. As such, pedigrees with impressive lod scores as well as seminal case histories can serve as hypothesis-generating sources but not as sufficient proof of etiology.

3. Environmental influences play an essential role in the etiology of schizophrenia. In the rush to molecular biology, it would appear shortsighted for psychopathologists no longer to consider why it is that among two individuals, both of whom inherit a genetic diathesis, one will go on to develop the disorder while the other will not. It would seem that progress will be maximized by tying molecular genetic approaches to further inquiry into environmental influence.

The simulation results, as well as empirical data, suggest that linkage studies of schizophrenia that are only fishing expeditions may yield few successes. An attractive alternative, broadly supported by our research, is the targeted strategy of the candidate gene approach (Gur 1986). Wright (1934) and Thoday (1967) have shown how a multifactorial system can be decomposed into a small and tractable number of single gene effects (say, 3, 4, or 5). Lander and Botstein (1988) have developed linkage analysis methods that can be used with such systems in experimentally bred species. Appropriate strategies in humans may be forthcoming. Likely sources for candidate genes would be single gene effects upon the many correlates of schizophrenia including D2 dopamine receptors (Wong et al. 1986), cerebral blood flow assessed with positron emission tomography (Early et al. 1987), cerebral ventricle size (Revey et al. 1984), and smooth pursuit eye tracking (Iacono et al. 1981; Holzman et al. 1988).

Research on the genetic epidemiology of schizophrenia suggests that it is a highly complex genetic disorder whose precise mechanisms of transmission remains uncertain. This will hardly come as a revelation to anyone. The pathway from gene product to behavioral expression is obviously long and presumably provides many opportunities for environmental modulation as well as moderation by other biological, physiological, and behavioral systems. The transmission of schizophrenia appears wholly unlike the transmission of HD and cystic fibrosis. Coronary heart disease and diabetes may represent more appropriate models for designing linkage studies of schizophrenia. The challenge that psychopathology presents to the geneticist is not so much in finding multiplex families that can be inten-
sively studied but, rather, in adapting approaches that have proved useful with relatively simple medical genetic disorders to account for the complexities, heterogeneity, and environmental sensitivity of human behavior.

References

Minneapolis: University of Minnesota Press, in press.

Acknowledgments

This study was supported in part by USPHS grant RR01632 from the National Institutes of Health. The authors would like to thank Michael Goay for his assistance in generating the family data used in the simulations.

The Authors

Matthew McGue, Ph.D., is Associate Professor, Departments of Psychology and Genetics, University of Minnesota, Minneapolis, MN. Irving I. Gottesman, Ph.D., F.R.C. Psych. Hon., is Professor of Psychology, Department of Psychology, University of Virginia, Charlottesville, VA.

Announcement

The New York State Psychiatric Association is sponsoring a symposium entitled "Coping With the Treatment Refractory Schizophrenic Patient" scheduled for Saturday, November 4, 1989, at the Roosevelt Hotel, New York, NY.

The symposium will address the challenges that occur in the hospitals, the streets, within the family, and the special problems that result from concurrent substance abuse and from violence.

For further information contact:

Lester E. Shapiro
General Chairman
Joint Committee on Schizophrenia
43 Andover Road
Rockville Centre, NY 11570
(516) 766-3442