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Participants with schizophrenia 
28 patients with schizophrenia were recruited from Department of Psychiatry of the Second Xiangya Hospital of Central South University, Changsha, Hunan, China. Two research psychiatrists performed clinical diagnostic evaluation for schizophrenia using the Structured Clinical Interview for DSM-IV (SCID) and undertook symptom assessment using Positive and Negative Syndrome Scale (PANSS) (1). The diagnostic agreement between the two raters was excellent for the 28 patients recruited (kappa=0.98). The inter rater reliability for total scores of PANSS was 0.83, and varied between 0.81 and 0.93 for sub-scale scores. The inclusion criteria for our study were: a) DSM-IV criteria for paranoid schizophrenia b) age between 16 and 45; c) right-handedness d) having at least nine years of school education (a necessity in China) e) having a total score of >60 in PANSS); f) the presence of at least one alive same-sex biological sibling. The exclusion criteria were: a) any contraindications to MRI scanning b) any other Axis-1 psychiatric disorder from DSM-IV (determined using SCID) in addition to schizophrenia c) history of alcohol, tobacco or other substance abuse; d) history of receiving electroconvulsive therapy or surgical operation on head; e) history of neurological or endocrine diseases f) non-compliance with the scanning protocol g) physical disability h) pregnancy or breast-feeding in women. 

For the patient sample, the duration of education varied from 9 to 16 years. The age of onset of varied from 16 to 40 years with duration of illness varying between 3 and 132 months. 7 patients with schizophrenia were drug naïve, while the rest were receiving antipsychotic medications at the time of image acquisition (risperidone [n=10, 2-6mg/day], clozapine [n=5, 200-350mg/day], quetiapine [n=5, 400-600mg/day], and sulpride [n=1, 200mg/day]). 

Data preprocessing 

fMRI data preprocessing was then conducted by SPM8 and a Data Processing Assistant for Resting-State fMRI (DPARSF) (2). Briefly, the first 10 volumes were dropped to allow scanner stabilization; the remaining functional scans were first corrected for within-scan acquisition time differences between slices, and then realigned to the middle volume to correct for inter-scan head motions. Subsequently, the functional scans were spatially normalized to a standard template (Montreal Neurological Institute) and resampled to 3( 3 (3mm3. After normalization, BOLD signal of each voxel was firstly detrended to abandon linear trend and then passed through a band-pass filter (0.01-0.08 Hz) to reduce low-frequency drift and high-frequency physiological noise. Finally, nuisance covariates including head motion parameters, global mean signals, white matter signals and cerebrospinal signals were regressed out from the BOLD signals. An automated anatomical labeling (AAL) atlas (3), was employed to parcellate the brain into 90 regions of interest (ROIs) (45 in each hemisphere). The names of the ROIs and their corresponding abbreviations are listed in Table S1.
Table S1:  The names and abbreviations of the regions of interest (ROIs) 

	Regions                       Abbr.
	Regions
	Abbr.

	Amygdala

Angular gyrus

Anterior cingulate gyrus

Calcarine cortex

Caudate

Cuneus

Fusiform gyrus

Heschl gyrus

Hippocampus

Inferior occipital gyrus

Inferior frontal gyrus (opercula)

Inferior frontal gyrus(triangular)

Inferior parietal lobule

Inferior temporal gyrus

Insula

Lingual gyrus

Middle cingulate gyrus

Middle occipital gyrus

Middle frontal gyrus

Middle temporal gyrus

Olfactory

Orbitofrontal cortex (inferior)

Orbitofrontal cortex (medial)
	AMYG

ANG  

ACG

CAL

CAU

CUN

FFG

HES

HIP

IOG

IFGoperc

IFGtriang

IPL

ITG

INS

LING

MCG

MOG

MFG

MTG

OLF

ORBinf

ORBmed
	Orbitofrontal cortex (middle)

Orbitofrontal cortex (superior)

Pallidum

Paracentral lobule

Parahippocampal gyrus

Postcentral gyrus

Posterior cingulate gyrus

Precentral gyrus

Precuneus

Putamen

Rectus gyrus

Rolandic operculum

Superior occipital gyrus

Superior frontal gyrus (dorsal)

Superior frontal gyrus (medial)

Superior parietal gyrus

Superior temporal gyrus

Supplementary motor area

Supramarginal gyrus

Temporal pole (middle)

Temporal pole (superior)

Thalamus
	ORBmid

ORBsup

PAL

PCL

PHG

PoCG

PCG

PreCG

PCUN

PUT

REC

ROL

SOG

SFGdor

SFGmed

SPG

STG

SMA

SMG  

TPOmid

TPOsup

THA




Frontal network, subcortical network and salience network
According to non-human primate and human studies, the ROIs considered to Frontal network are: ACG, IFGoperc, IFGtriang, MFG, ORBinf, ORBmed, ORBmid, ORBsup, REC, SFGdor, SFGmed, SMA (12 in total). The ROIs considered to subcortical network are: AMYG, CAU, HIP, PUT and THA (5 in total). The ROIs considered to salience network are: INS, ACG and PUT. 
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Figure S1: Schematic flowchart of data analysis pipeline. Regional mean fMRI time series were estimated by applying an anatomical template image to each subject’s image. Measures of functional connectivity and anatomical distance were estimated for every subject from 90 AAL based parcellations. Comparisons of these measures were carried out among patients with schizophrenia, siblings and healthy controls.
Effects of motion scrubbing
In view of the fact that inter-hemispheric connections are generally longer than intra-hemispheric ones and might therefore be more susceptible to motion artifacts, particularly in schizophrenia, we used DVARS method (temporal derivative of time courses and variance across voxels) for motion scrubbing (as described in (4)) in addition to standard movement control criteria for fMRI data from all subjects. Using this approach the rate of change in the BOLD signal is measured across the entire brain for each frame of data. A temporal mask is then generated for each region of interest, marking frames whose DVARS exceeded 3. We chose those frames with a number of masks greater than 20 out of the total 90 of temporal masks to generate a final temporal mask for each subject. The temporal mask was then applied to eliminate marked frames from the analysis. Following DVARS only a very small proportion of data (1- 20%) was removed from a total of 34 subjects out of 116 subjects (see Fig. S2) and this made no notable difference to the overall results. In addition, we also evaluated group differences in head motion among the 3 groups according to the criteria of (5). The results showed that the 3 groups had no significant differences in head motion (F=0.93, p=0.4). Consequently, we retained the results obtained using standard preprocessing steps as described above.
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Figure S2: Histogram showing the proportion of image data removed as a result of applying DVARS motion scrubbing. Most of the fMRI data was not affected by motion artifacts.

The issue of global signal regression

To date, a consensus has not been reached with respect to the inclusion of global signal regression as a preprocessing step. Some studies emphasize the demerits of the correction technique (6; 7), while others (8–10) argue for the merits of global regression. Notably, both sides of the arguments have relied heavily on assumptions regarding the direction of correlation coefficients based on the time series of BOLD fluctuations (or their simulations). More recently, direct electrophysiological recording from the cortex of 5 human subjects has clearly demonstrated the relationship between spontaneous neural activity and negative correlations in the BOLD. Furthermore, global signal regression has been shown to improve the haemodynamic-neuronal correspondence, arguing in favour of this approach (11). Nevertheless, spurious anticorrelations may be induced if the global signal is of high magnitude and is correlated negatively with a large number of voxels.

A data-driven solution for this problem was recently proposed by Chen et al. (12). These authors proposed a criterion metric called Global Negative Index measured as the proportion of all voxels in the brain that show negative correlation with the global signal expressed as a percentage. A GNI value of 3 or greater indicates that the removal of global signal using regression will induce a number of spurious negative correlations. For values less than 3, the propensity for spurious anticorrelations will be very low and global signal regression will indeed be advantageous in removing the non-neural sources of the signal.

Using this approach we determined the GNI in our dataset. The mean GNI in patients is 2.26, the mean GNI in the siblings is 2.12 and the mean GNI in the controls is 2.07. This indicated that global regression would be advantageous in our dataset. 

It is important to note that the interpretation of our study does not depend on the sign of the correlation coefficients of the individual links. ADF is a first order covariance metric that depends on the distribution, not the central tendency of the functional connectivity scores. Whether the connectivity scores are centered on zero (after removal of global signal) or not, the variance will be the same (13). Similarly, the comparison of strength of functional connectivity among the groups primarily depends on the relative difference between the magnitudes rather than the sign. Nevertheless caution must be practiced when interpreting the negative connectivity reported in this paper as anticorrelations; it is advisable to consider these as relative decrease in the coefficients when compared to the positive values.

Support Vector Machine (SVM) Classifier 
The SVM is a learning machine for a two-class classification problem. Since first proposed by Cortes and Vapnik (14) as a logistical extension of statistical learning theory, SVM has become widely used in many areas because of their ability to handle very high-dimensional data, and their accuracy in the classification and prediction. Because of these properties, they have proven useful in the analysis of functional magnetic resonance imaging data.  SVM conceptually implements the idea that vectors are non-linearly mapped to a very high dimension feature space. In the feature space, a linear separation surface is created to separate the training data by minimizing the margin between the vectors of the two classes. The training ends with the definition of a decision surface that divides the space into two sub-spaces. Each sub-space corresponds to one class of the training data. Once the training is completed, the test data are mapped to the feature space. A class is then assigned to the test data depending on which sub-space they are mapped to. In this paper, a SVM toolkit named libsvm written by Lin Chih-Jen (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) is used. A radial basis function (RBF) is selected as a kernel function (t=2) and parameter C is fixed to 10 to trade-off learning and extend ability while other parameters are kept as default values.

We also used permutation tests for statistical assessment of classifier performance (15; 16). Choosing the generalization rate as the statistic, permutation tests are employed to estimate the statistical significance of the observed classification accuracy. In permutation testing, the class labels of the training data are randomly permuted prior to training. Leave one out cross validation is then performed on the permuted training set, and the permutation was repeated 1000 times. It is assumed that a classifier is learned reliably from the data when the generalization rate r0 obtained by the classifier trained on the real class labels exceeds the 95% confidence interval of the classifier trained on randomly relabelled class labels. For any value of the estimated r0, the appropriate P-value represents the probability of observing a classification prediction rate of no less than r0. 
An SVM classifier analysis was first applied to discriminate between schizophrenia patients and healthy controls. We randomly select one sample as test sample and the remaining sample as training sample and repeat it for 1000 times. At every repetition, we select the correlation coefficients of those links with the significant p value of the difference between two groups less than the threshold among all possible links to train the data. The trained SVM is then applied to the test sample to obtain the discrimination accuracy. Mean discrimination accuracy (sensitivity, specificity) for the test sample is also obtained. Similar analysis was applied to discriminate between schizophrenia siblings vs. healthy controls and schizophrenia patients vs. siblings. We also studied the effect of SVM approach separately on short distance connections and long distance connections.
Discriminatory ability of connectivity changes

As shown in Table S2 the classification accuracy to discriminate patients with schizophrenia from controls was >90% when the connections were thresholded at p=0.003 or p=0.004. The results shown in Table S2 reveal that the overall pattern of dysconnectivity makes a considerably strong contribution to the discrimination between schizophrenia patients and controls, though the separation of controls and siblings is not very high.
Table S2: Discrimination Results of all 4005 links.
	threshold
	0.001
	0.002
	0.003
	0.004
	0.005
	0.006
	0.007
	0.008

	1. Schizophrenia patients vs healthy controls

	accuracy
	85.23%
	87.50%
	90.91%
	90.91%
	89.77%
	88.64%
	88.64%
	89.77%

	sensitivity
	67.86%
	71.43%
	75%
	75%
	75%
	71.43%
	71.43%
	75%

	specificity
	93.33%
	95%
	98.33%
	98.33%
	96.67%
	96.67%
	96.67%
	96.67%

	2. Healthy siblings vs healthy controls

	accuracy
	80.68%
	84.09%
	81.82%
	82.95%
	82.95%
	84.09%
	84.09%
	82.95%

	sensitivity
	57.14%
	60.71%
	60.71%
	60.71%
	57.14%
	60.71%
	60.71%
	64.26%

	specificity
	91.67%
	95%
	91.67%
	93.33%
	95%
	95%
	95%
	91.67%

	3. Schizophrenia patients vs healthy siblings

	accuracy
	67.86%
	67.86%
	71.43%
	71.43%
	76.79%
	76.79%
	75%
	73.21%

	sensitivity
	64.29%
	67.86%
	75%
	71.43%
	75%
	75%
	75%
	71.43%

	specificity
	71.43%
	67.86%
	67.86%
	71.43%
	78.57%
	78.57%
	75%
	75%


Subjects with diagnosis of schizophrenia continued to be classified accurately from controls when using information from either short or long-range connections. Nevertheless, the performance of the classifier as estimated by diagnostic odd ratios was numerically superior when the information from long-range connections was used. In particular, the ability to separate siblings from controls improved more than twice when long-range connections were used for machine learning and classification. These results (obtained at a threshold of p=0.005) are shown in Table S3.
Table S3.  Discrimination accuracy for long and short connections (threshold=0.005)
	
	Accuracy
	Sensitivity
	Specificity
	PPV
	DOR

	Short range connections
	Scz vs Sib
	71.43% (p=0.03)
	71.43%
	71.43%
	0.71
	6.3

	
	Scz vs Con
	85.23% (p<0.001)
	67.86%
	93.33%
	0.83
	29.5

	
	Sib vs Con
	79.55% (p<0.001)
	53.57%
	91.67%
	0.75
	12.7

	Long range connections
	Scz vs Sib
	73.21% (p=0.01)
	67.86%
	78.57%
	0.76
	7.7

	
	Scz vs Con
	86.36% (p<0.001)
	71.43%
	93.33%
	0.83
	35.0

	
	Sib vs Con
	84.09% (p<0.001)
	60.71%
	95%
	0.85
	29.4


DOR: Diagnostic Odds Ratio, PPV: positive predictive value Scz: Patients with schizophrenia Sib: Healthy siblings Con: Healthy controls

Global efficiency and the ADF

We interpret the preferential reduction in long-range connections as an indicator of a reduction in the efficiency of information transfer in the brain networks. In other words, it is likely that a linear relationship is present between the ADF and the efficiency of information transfer so that a highly negative ADF value (as seen in patients) will be accompanied by a reduction in the efficiency.  Numerous observations using structural, functional and electrophysiological studies in schizophrenia indeed demonstrate evidence for such reduced efficiency. A number of these works involve the use of graph theoretical approach to compute metrics representing the ease of information transfer in brain networks (17; 18). We adopted this approach to test our assumption of linear relationship between ADF and efficiency.   

Functional connectivity matrices were obtained for each subject using the 90 AAL regions (See Fig S3). Graphs were constructed by thresholding each subject’s correlation matrix at Bonferroni corrected p<0.05 to generate binary graphs. The connections whose absolute correlation coefficients were greater than the threshold were represented as edges between the corresponding regional nodes. The global efficiency GE is often considered as a measure of competent information transfer in a network. It can be measured mathematically using the inverse of the mean shortest path length between each pair of brain regions (nodes) in a graph-based network (19). We used the algorithms provided by Brain Connectivity Toolbox on the unweighted binary graphs to compute the global efficiency value for each subject. This value was then related to the anatomical distance function (ADF) within in each group measured at the same threshold.
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Figure S3: Functional connectivity matrices of all brain regions (Pearson’s correlation) within each group.

Firstly, we noted a trend towards reduction in global efficiency in patients with schizophrenia compared to siblings (t=-1.51, p=0.14) though this difference was less obvious when compared to controls (t=-1.36, p=0.18). Siblings did not differ significantly from controls (t=-0.69, p=0.5). Interestingly, we noted a significant linear relationship between ADF and global efficiency in the control group (r=0.40, p=0.002), and a trend in the same direction in siblings(r=0.37, p=0.06), weakening further in patients (r=0.28, p=0.15). This suggests that a gain in global efficiency occurs with a strengthening of long distance connections (or weakening of short distance connections) that occurs in healthy adolescence. In patients along with a reduction in long distance connections, the global efficiency also appears to be numerically reduced (though not reaching statistical significance).

It is important to note that the absolute values of graph-based metrics depend heavily on the parcellation schemes, preprocessing methods and threshold used. Furthermore, most unweighted graph-based connectivity approaches discard the correlations of smaller magnitude as uninformative and consider only the absolute values of the correlation coefficients.  We undertook an exploratory analysis to establish if there is any signal to support our speculation presented in the discussion section. The results above must be treated with caution; but given the above findings, we conclude that further detailed exploration of the relationship between ADF and efficiency of information transfer in patients and siblings with genetic risk of schizophrenia is warranted. 
Effect of antipsychotics

Most studies exploring the effect of antipsychotics suggest that the medications often have a ‘restoring’ effect on aberrant connectivity (20). Therefore it is likely that the observed degree of aberrant connectivity in patients is more conservative than what is expected in a drug-naïve sample, but in the same direction. Further, in the present study, we observed connectivity deficits in both medicated patients and unmedicated siblings. This suggests that antipsychotic use cannot explain all of the observed results. Nevertheless, we undertook further tests to ensure that the current dose of antipsychotics does not affect the results observed here.

To determine the effect of antipsychotic dose on ADF we obtained the chlorpromazine equivalents of the prescribed medications using the conversion suggested by Woods et al (21), and related the dose to ADF. We noted that the correlation of dose and ADF was not significant (r=0.21, p=0.4) in the medicated subjects. We also noted that there was no significant difference in the ADF between the medicated (n=21) and unmedicated (n=7) subjects (t=1.34 p= 0.2). These results suggest that we can confidently assume that the group differences are unlikely to be driven by the use of antipsychotics, nevertheless this issue needs to be studied experimentally in the future. 

[image: image4.png]
Figure S4: Regions showing most prominent dysconnectivity in patients and siblings. (A) Comparison between patients with schizophrenia and healthy controls, where blue line represent threshold of Bonferroni correction. There are 15 significant links that are shown with green stars and presented in Table 4 in the manuscript. (B) Comparison between schizophrenia siblings and healthy controls. (C) Comparison between patients with schizophrenia and their siblings. (D) Two links (PCUN.L-SFGmed.R and TPOsup.L-MOG.R) are abnormal both in schizophrenia patients and in their high-risk relatives (E) The Salience network (insula) and orbitofrontal (gyrus rectus) dysconnectivity differentiates patients from their high risk relatives.
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