Supplementary Data

Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro Authors:

Pan Guo ¹*, Huifeng Pi ¹*, Shangcheng Xu ¹*, Lei Zhang ¹, Yuming Li ², Min Li ¹, Zhengwang Cao ¹, Li Tian ¹, Jia Xie ¹, Renyan Li ¹, Mindi He ¹, Yonghui Lu ¹, Chuan Liu ¹, Weixia Duan ¹, Zhengping Yu ¹*, Zhou Zhou ¹*

Authors' Affiliations:

¹Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China

²Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical

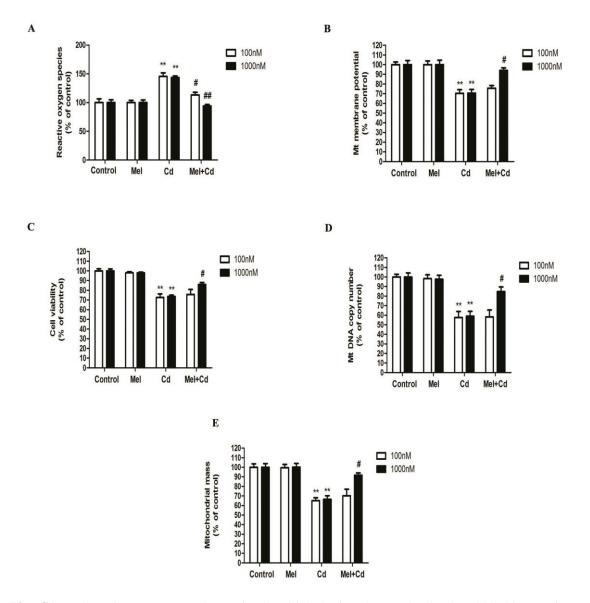
University, Chongqing 400037, People's Republic of China

Correspondence to: Zhengping Yu, Ph.D., Zhou Zhou, Ph.D., Department of

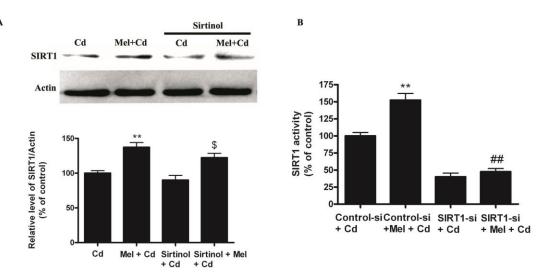
Occupational Health, Third Military Medical University, Chongqing 400038, China,

Tel: +86-23-68752290, Fax: +86-23-68752290, Email: yuzping_tmmu@126.com (ZP.

Yu); 510786341@qq.com (Z. Zhou)


*contributed equally to this study

+corresponding author


Table	S1
-------	-----------

The treatment groups in our study						
	Step 1	Step 2	Step 3		Step 4	
			i	ii	Step 4	
	Control	Control	Control	Control-siRNA+ Cd	Control	
	Cd (2.5 µM)	Melatonin	Melatonin+ Cd	Control-siRNA+	Cd	
The				melatonin + Cd		
group in	$Cd(5 \mu M)$	Cd	Sirtinol +melatonin	SIRT1-siRNA+	Melatonin+ Cd	
each step			+ Cd	melatonin + Cd		
	Cd (10 µM)	Melatonin+ Cd	Sirtinol +Cd	SIRT1-siRNA+ Cd	luzindole(10	
					μ M) + Cd	

Note: In step 2, 3 and 4, the doses of Cd, melatonin and sirtinol were 5 μ M, 0.5 μ M and 30 μ M, respectively.

Fig. S1. Melatonin protects against mitochondrial dysfunction and mitochondrial biogenesis disruption after exposure to Cd *in vitro*. HepG2 cells were pretreated with 0.1 μ M or 1 μ M melatonin for 2 h prior to 5 μ M Cd treatment. (A) ROS production, (B) $\Delta\Psi$ m level, (C) cell viability, (D) mtDNA copy number, (E) mitochondrial mass. The results are expressed as a percentage of the control, which was set at 100%. The values are presented as the mean \pm SEM, **p < 0.01 versus control group, [#]p < 0.05, ^{##}p < 0.01 versus the Cd (5 μ M) group (n=6).

Fig. S2. (A) The effects of melatonin and sirtinol pretreatment on SIRT1 expression, **p < 0.01 versus the Cd (5 μ M) group, and $^{\$}p < 0.05$ versus the sirtionl + Cd (5 μ M) group (n=6). (B) The effects of melatonin and SIRT1 siRNA pretreatment on SIRT1 activity. **p < 0.01 versus the Control siRNA + Cd (5 μ M) group, $^{\#}p < 0.01$ versus the Control siRNA + Cd (5 μ M) group, $^{\#}p < 0.01$ versus the Control siRNA + Cd (5 μ M) group, the expressed as a percentage of the control ("Cd" group taken as a control), which is set at 100%. The values are presented as the mean ±SEM.