Invited review: Part of an invited issue on carbon allocation

Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects

Daniel Epron1,2,12, Michael Bahn3, Delphine Derrien4, Fernando Alfredo Lattanzi5, Jukka Pumpanen6, Arthur Gessler7,8, Peter Högb9, Pascale Maillard1,2, Masako Dannoura10, Dominique Gé rant1,2 and Nina Buchmann11

1Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandœuvre-les-Nancy, France; 2INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Centre de Nancy, F-54280 Champenoux, France; 3University of Innsbruck, Institute of Ecology, Starnwartestr. 15, A-6020 Innsbruck, Austria; 4INRA, UMR 1138, Biogéochimie des Ecosystèmes Forestiers, Forestières, Centre de Nancy, F-54280 Champenoux, France; 5Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85350, Freising-Weihenstephan, Germany; 6Department of Forest Ecology, University of Helsinki, PO Box 27, 00014 Helsinki, Finland; 7Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, D-15374 Müncheberg, Germany; 8Faculty of Agriculture and Horticulture, Humboldt University at Berlin, D-12489 Berlin, Germany; 9Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden; 10Laboratory of Forest Utilization, Department of Forest and Biomaterial Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 11ETH Zurich, Universitätsstr. 2, LFW C56, 8092 Zurich, Switzerland; 12Corresponding author (daniel.epron@univ-lorraine.fr)

Received February 2, 2012; accepted May 15, 2012; published online June 14, 2012; handling Editor Michael Ryan

Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO2 into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground—within a few days or less—and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. 13C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source–sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon–nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.

Keywords: carbon isotope, forest, partitioning, residence time, transfer time.
Introduction

Carbon (C) allocation is an important determinant of the C budget of forests and its response to changing environmental conditions. It affects tree growth (competition between aboveground and belowground C sinks), the acquisition of resources (light, nutrients and water) that often limit forest productivity and C sequestration in both standing biomass and soil organic matter (Litton et al. 2007). Carbon allocation results from several processes (Cannell and Dewar 1994); and the term ‘allocation’ is thus often used to describe many different aspects of plant and ecosystem physiology, including patterns in live biomass, the flux of C to a particular plant compartment and the distribution of flux as a fraction of gross photosynthesis (Litton et al. 2007).

Carbon allocation has been estimated for decades with C mass-balance approaches, which typically combine measurements of standing biomass with measurements of respiratory CO$_2$ efflux. For example, belowground C flux, including growth and respiration of roots and mycorrhiza, as well as exudates, can be estimated as the cumulative soil CO$_2$ efflux minus C input from aboveground litter plus changes in C stored in roots, in the forest floor and in the soil (Giardina and Ryan 2002). The aboveground C flux is often inferred from annual changes in aboveground biomass derived from allometric relationships and from measurements of respiration of aboveground organs that are further scaled to the stand level (Ryan et al. 1996). Alternatively, the total aboveground C flux can be computed as the difference between gross primary productivity inferred from eddy flux measurements of net ecosystem CO$_2$ exchange and belowground C flux estimates (Navarro et al. 2008). While these approaches have proven to be fruitful for quantifying the whole ecosystem C budget, uncertainties remain about the contribution of different above- and belowground C fluxes to ecosystem respiration, which is the major efflux of C from the biosphere to the atmosphere, and to C sequestration within the ecosystem. Budget-based mass-balance approaches also provide limited insight into the short-term dynamics of C allocation that are critical for understanding the mechanisms underlying the annual patterns. One of the most important unanswered questions is the role of environmental drivers versus phenology on changes in C allocation patterns at seasonal scales and how these two factors are affected by climate change. Given the major importance of belowground C allocation for soil processes, we also need a quantitative mechanism for the coupling of belowground processes with canopy C assimilation. Recent technological developments offer promising approaches to answer these important questions by directly tracing C fluxes with high temporal resolution.

Fluctuations of photosynthetic C isotope discrimination can be used to trace the origin and fate of C into metabolites and respired CO$_2$ at various temporal and spatial scales in plants and ecosystems (see Dawson et al. 2002), but the low signal (a few per mil) makes resolving transfer rates and time lags difficult. Nevertheless, this approach has been used to investigate C transfer in trees and between forests and the atmosphere (Ekblad and Höglberg 2001, Bowling et al. 2002, Knoboh et al. 2005, Brandes et al. 2006, Keitel et al. 2006, Kodama et al. 2008, Marron et al. 2009, Wingate et al. 2010). Correlations between the isotope composition of respired CO$_2$ and either climatic drivers or online measurements of daily photosynthetic C isotope discrimination can constrain transfer rates of C from the foliage to different C pools in the ecosystem (Wingate et al. 2010, Brüggemann et al. 2011). Because the strength of the natural signal is weak, precise estimates of transfer rates and time lags are hampered by post-photosynthetic fractionation (both biological and physical like those occurring during CO$_2$ transport through soil pores), by mixing of several C sources (recently assimilated versus stored C) and by mixing of autotrophic and heterotrophic components of soil CO$_2$ efflux (McDowell et al. 2004, Kodama et al. 2008, Wingate et al. 2010, Salmon et al. 2011). Such mixing and fractionation effects can cause up to 12‰ short-term variation in C isotope composition of plant and of soil-respired CO$_2$ (Werner and Gessler 2011), sometimes causing a complete loss of the photosynthetic isotopic signal from the canopy to the soil (Kodama et al. 2008).

The more promising technique for understanding C allocation is to artificially alter the C isotope content of assimilated C using stable (13C) CO$_2$ or radioactive (14C and 11C) CO$_2$ as short pulses or over long periods. In these labelling experiments, partitioning of photosynthesis products to sinks can be estimated as the amount of labelled C retained in a compartment or lost by respiration, exudation or volatile organic compound emissions, relative to the amount of labelled C assimilated by the plant. In addition, allocation may also refer to the partitioning of labelled C among several C-containing compounds in a given organ, for example between structural and non-structural C (Kagawa et al. 2005, 2006b), or between storage compounds like starch and metabolites with high turnover (Vizoso et al. 2008). Because accretion of labelled C in a compartment results from the net flux of labelled C into versus out of this compartment, the term allocation refers therefore to both the dynamics and the amount of labelled C retrieved in a compartment (Figure 1). Following Litton et al. (2007), we here use the term partitioning as a quantitative estimate of the fraction of labelled C supplied to a tree that is allocated to any given compartment.

Recent development of novel tools to trace labelled C in respired CO₂ by isotope ratio infrared spectroscopy (IRIS) at a high frequency has enabled precise quantification of C residence times in short-lived storage pools and of transfer rates among plant compartments and between plants, soil and the atmosphere (Bahn et al. 2009, Plain et al. 2009, Barthel et al. 2011, Dannoura et al. 2011, Dannoura et al. 2011, Epron et al. 2011, Warren et al. 2012). Combining long-term tracer time courses with compartmental modelling techniques is promising to estimate the number and the half-life of C pools contributing to C partitioning in trees. Although information on half-lives, transfer rates and mixing pools is highly relevant to improve our understanding of allocation in tree–soil systems, reliable data are still scarce.

This review aims to (i) identify the experimental, methodological and analytical challenges to currently available pulse-labelling techniques and give recommendations on practices for designing future C pulse-labelling experiments, (ii) summarize results from pulse-labelling experiments on trees to synthesize current knowledge and elaborate emerging research questions and (iii) present the classical mathematical methods commonly used for characterizing the transfer of labelled C into different compartments and fluxes and highlight the potential of more mechanistic approaches, based on compartmental modelling of tracer time courses.

We synthesize data reported in 47 pulse-labelling studies on trees using ¹¹C, ¹³C or ¹⁴C as tracers under laboratory conditions and in the field (Table 1), in which the tracer was applied either to branches or to trees of different sizes by enclosing one or several trees in chambers or using free air C isotope enrichment systems. These studies were conducted on a limited number of species (mainly beech and different species of pine) from temperate (33 studies) and boreal (14 studies) forests, while trees from tropical ecosystems have not yet been assessed. These studies addressed several processes, including allocation to respiration, residence time, within-tree and belowground transfer of photosynthates, partitioning of labelled C among organs and the use of stored C (Figure 1). Long-term labelling experiments can elucidate processes that occur over the longer term, but they are not within the scope of this review, although we do mention important results from long-term labelling experiments wherever relevant.

The goals of C pulse-labelling experiments are typically to differentiate between environmental and biological controls on C transfer and allocation, and to elucidate the contributions of old (e.g., stored) and current assimilates to C sink activities.
Table 1. Allocation of assimilated labelled C to different components and processes in trees and soil, as studied by pulse-labelling of trees. Numbers in square brackets refer to the flux depicted in Figure 1. IsoFACE refers to a free air fumigation system. The study reporting 14C pulse-labelling of tall trees was done in the frame of the EBIS project (see the text for details).

<table>
<thead>
<tr>
<th>Flux</th>
<th>Methods</th>
<th>Type of tree</th>
<th>Species</th>
<th>References</th>
<th>Main finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration [2]</td>
<td>Pulse 14C, whole tree</td>
<td>Seedlings</td>
<td>Pine</td>
<td>Hansen et al. (1996)</td>
<td>Respiration is a major sink of labelled C assimilated in winter</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, ecosystem</td>
<td>Shrub, <5 m</td>
<td>Deciduous perennial shrubs</td>
<td>Carbone and Trumbore (2007)</td>
<td>Three pools of labelled C with different half-lives contribute to respiration</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, crown</td>
<td>Tree, <15 m</td>
<td>Beech</td>
<td>Plain et al. (2009)</td>
<td>Two pools of labelled C with different half-lives contribute to trunk and soil CO$_2$ efflux</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedling</td>
<td>Pine, spruce and birch</td>
<td>Pumpanen et al. (2009)</td>
<td>Roots and rhizosphere respire 9–26% of assimilated C</td>
</tr>
<tr>
<td></td>
<td>IsoFACE</td>
<td>Tree, >15 m</td>
<td>Beech, spruce</td>
<td>Andersen et al. (2010)</td>
<td>Recent photosynthates contribute differently to root respiration in the two species O$_3$ exposure reduces allocation of recent assimilates to respiration in beech</td>
</tr>
<tr>
<td></td>
<td>IsoFACE</td>
<td>Tree, >15 m</td>
<td>Beech, spruce</td>
<td>Ritter et al. (2011)</td>
<td>Allocation to soil respiration varies seasonally depending on species</td>
</tr>
<tr>
<td>Storage [3]</td>
<td>Pulse 13C, crown</td>
<td>Tree, <1 m</td>
<td>Chestnut</td>
<td>Mordacq et al. (1986)</td>
<td>Storage occurs in stump in late summer</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, branch</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Hansen and Beck (1994)</td>
<td>In autumn, recent photosynthates are transiently stored as soluble C and supply root growth in winter</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedlings</td>
<td>Pine</td>
<td>Hansen et al. (1996)</td>
<td>Starch builds up in winter in root</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C and 14C, branch</td>
<td>Tree, <1 m</td>
<td>Walnut</td>
<td>Lacointe et al. (2004)</td>
<td>Storage is an active sink, not a buffer for excess C</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, >15 m</td>
<td>Broadleaved species</td>
<td>Keel et al. (2007)</td>
<td>Recent C mixes fast with older C in some species, depending on the nature of storage compounds</td>
</tr>
<tr>
<td></td>
<td>IsoFACE</td>
<td>Tree, >15 m</td>
<td>Beech, spruce</td>
<td>Kuptz et al. (2011)</td>
<td>Storage is an important sink at the end of summer in beech</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, ecosystem</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Keel et al. (2012)</td>
<td>Allocation and residence time are different in fine roots and root tips</td>
</tr>
<tr>
<td>Structural growth [4]</td>
<td>Pulse 13C, crown</td>
<td>Tree, <1 m</td>
<td>Chestnut</td>
<td>Mordacq et al. (1986)</td>
<td>Aboveground growth is the main sink of recent C in early summer</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, branch</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Hansen and Beck (1994)</td>
<td>Recent photosynthates of previous year needles supply sprouting at bud break and secondary growth in summer</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedling</td>
<td>Pine</td>
<td>Lippu (1994)</td>
<td>Carbon allocation to root is high before and after the period of intensive shoot growth</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Tree, <5 m</td>
<td>Poplar</td>
<td>Horwath et al. (1994)</td>
<td>Allocation shifts between aboveground in early summer and belowground in late summer</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, crown</td>
<td>Tree, <1 m</td>
<td>Larch</td>
<td>Kagawa et al. (2006a)</td>
<td>Allocation shifts between aboveground in early summer and belowground in late summer</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, >15 m</td>
<td>Beech, hornbeam</td>
<td>Hoch and Keel (2006)</td>
<td>Infructescence photosynthesis contributes to fruit development in hornbeam, not in beech</td>
</tr>
</tbody>
</table>

(continued)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Flux</th>
<th>Methods</th>
<th>Type of tree</th>
<th>Species</th>
<th>References</th>
<th>Main finding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remobilization from reserve [6]</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedling</td>
<td>Pine, spruce and birch</td>
<td>Pumpanen et al. (2009)</td>
<td>Root (and ectomycorrhiza) growth uses 13–21% of recently assimilated C</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, whole tree</td>
<td>Tree, <1 m</td>
<td>Fir</td>
<td>Endrulat et al. (2010)</td>
<td>Carbon allocation to cellulose in roots is independent of fine root diameter</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, >15 m</td>
<td>Oak, beech, lime tree</td>
<td>Keel and Schädel (2010)</td>
<td>Expanding leaves are strong sink of recent photosynthates, especially in lime tree</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Cuttings</td>
<td>Birch</td>
<td>Kasurinen et al. (2012)</td>
<td>O_2 shifts C allocation from above to belowground</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Hansen and Beck (1990)</td>
<td>Early wood formation partly relies on stored C</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedling</td>
<td>Pine</td>
<td>Lippu (1998)</td>
<td>Stored C supports root respiration in winter</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C & 14C, branch</td>
<td>Tree, <1 m</td>
<td>Walnut</td>
<td>Lacointe et al. 2004</td>
<td>Stored C supports sprouting in spring</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, <15 m</td>
<td>Beech</td>
<td>Nogués et al. (2006)</td>
<td>Stored C contributes to leaf respiration in a proportion varying seasonally</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, whole tree</td>
<td>Tree, <1 m</td>
<td>Larch</td>
<td>Kagawa et al. (2006a)</td>
<td>Half C in new needles is derived from storage</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, ecosystem</td>
<td>Tree, <5 m</td>
<td>Spruce</td>
<td>Carbone et al. (2007)</td>
<td>Rhizosphere respiration relies more on stored C than on recent photosynthetic</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, whole tree</td>
<td>Seedling</td>
<td>Oak</td>
<td>Vizoso et al. (2008)</td>
<td>40–85% of C in new leaves derives from stored C</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, EBIS</td>
<td>Tree, >15 m</td>
<td>Broadleaved species</td>
<td>Gaudinski et al. (2009)</td>
<td>50–60% of fine root growth is supported by stored C</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, whole tree</td>
<td>Tree, <1 m</td>
<td>Fir</td>
<td>Endrulat et al. (2010)</td>
<td>Stored C supports new root growth in next spring</td>
</tr>
<tr>
<td></td>
<td>Pulse 14C, whole tree</td>
<td>Seedling</td>
<td>Acacia</td>
<td>Schütz et al. (2009)</td>
<td>Root starch supports shoot growth after fire-induced stem death</td>
</tr>
<tr>
<td>IsoFACE</td>
<td>Tree, >15 m</td>
<td>Beech, spruce</td>
<td>Kuptz et al. (2011)</td>
<td></td>
<td>Trunk respiration is mostly supplied by stored C in spruce all year round, but only in spring in beech</td>
</tr>
<tr>
<td>IsoFACE</td>
<td>Tree, >15 m</td>
<td>Beech</td>
<td>Grams et al. (2011)</td>
<td></td>
<td>Remobilized C contributes significantly to phloem sugars in summer</td>
</tr>
<tr>
<td>BVOC emission [7]</td>
<td>Pulse 13C, whole tree</td>
<td>Seedlings</td>
<td>Pine, spruce, larch, birch</td>
<td>Ghirardo et al. (2010)</td>
<td>The fraction of BVOC emissions originating from recent photo-synthates or from stored C varies among species</td>
</tr>
<tr>
<td>Basipetal phloem transport [8]</td>
<td>Pulse 11C, leaf</td>
<td>Seedling</td>
<td>Ash, elm, spruce, pine</td>
<td>Thompson et al. (1979)</td>
<td>Transfer rate is higher in broadleaved than in coniferous species</td>
</tr>
<tr>
<td></td>
<td>Pulse 11C, leaf</td>
<td>Seedling</td>
<td>Ash, rowan</td>
<td>Jahnke et al. (1998)</td>
<td>Differences in anatomy account for difference in transfer rate between the two species</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, <5 m</td>
<td>Japanese cedar</td>
<td>Kagawa et al. (2005)</td>
<td>Sieve cell connections change seasonally</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, branch</td>
<td>Tree, <5 m</td>
<td>Larch</td>
<td>Kagawa et al. (2006b)</td>
<td>Spiral translocation of photosyn-thate occurs in this species</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, ecosystem</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Högb erg et al. (2008)</td>
<td>Half-life of labelled C in phloem sap is short (1.3 day)</td>
</tr>
<tr>
<td></td>
<td>Pulse 13C, whole tree</td>
<td>Sapling</td>
<td>Beech</td>
<td>Ruehr et al. (2009)</td>
<td>Transfer rate is reduced by drought</td>
</tr>
</tbody>
</table>

(continued)
We specifically investigate (i) how fast the assimilated C is transferred belowground, how the rate of C transfer differs among species and how this transfer rate responds to environmental factors; (ii) how residence times of labelled C differ among tree compartments depending on their source/sink status and on the respective season; (iii) how climate and environmental stresses influence C allocation to different sink organs and whether we are able to disentangle the effects of phenology from those mediated by environmental factors; and (iv) how stored versus current assimilates contribute to growth and respiration demands in sink organs, owing to the role of C storage in perennial species.

Pulse-labelling of trees

Pulse-labelling of trees with labelled CO₂ allows C fluxes to be traced in the tree–soil system. Different forms of labelled C were applied to branches, potted trees or field-grown trees of different sizes (Table 1). We address whether these methods are adequate to investigate short-term C allocation patterns and based on past and current works, we recommend best practices for designing future C pulse-labelling experiments.

Carbon isotopes as tracers

Labelling plants with isotopically enriched CO₂ has been used for decades to study the fate of C into photosynthetic products in leaves. One historical example is the experiments that were conducted in the 1950s by Calvin and co-workers leading to the discovery of the photosynthetic C reduction cycle (Calvin 1961). 14C (half-life of 5730 years) was initially used because tools were available for tracing the radioactivity in the labelled compounds (autoradiography, liquid scintillation (LS) spectrometry and accelerator mass spectrometry (AMS)). The precision of the LS counter technique is adequate for studies

Table 1. (Continued)

<table>
<thead>
<tr>
<th>Flux</th>
<th>Methods</th>
<th>Type of tree</th>
<th>Species</th>
<th>References</th>
<th>Main finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acropetal phloem transport [9]</td>
<td>Pulse 13C, crown</td>
<td>Tree, <15 m</td>
<td>Beech, oak, pine</td>
<td>Dannoura et al. (2011)</td>
<td>Transfer rate is higher in broadleaved than in coniferous species</td>
</tr>
<tr>
<td>Acropetal phloem transport [9]</td>
<td>Pulse 13C, whole tree</td>
<td>Sapling</td>
<td>Beech</td>
<td>Barthel et al. (2011)</td>
<td>Transfer rate is reduced by drought</td>
</tr>
<tr>
<td>Acropetal phloem transport [9]</td>
<td>Pulse 13C, whole tree</td>
<td>Tree, <15 m</td>
<td>Pine</td>
<td>Warren et al. (2012)</td>
<td>Transfer rate is not affected by shading</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 14C, whole tree</td>
<td>Tree, <1 m</td>
<td>Larch</td>
<td>Schneider and Schmitz (1989)</td>
<td>Labelled C moves acropetally during sprouting</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 13C and 14C, whole tree</td>
<td>Seedling</td>
<td>Birch and fir</td>
<td>Simard et al. (1997a, 1997b)</td>
<td>Bidirectional transfer of C occurs between seedlings</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 14C, tree</td>
<td>Tree, <1 m</td>
<td>Aspen</td>
<td>Mikan et al. (2000)</td>
<td>Elevated CO₂ increases transfer of labelled C to microbial biomass</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 14C, tree</td>
<td>Seedling</td>
<td>Pine</td>
<td>Leake et al. (2001)</td>
<td>Mycorrhizal mycelia allocate C to fine roots foraging for nutrients</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 13C, ecosystem</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Högberg et al. (2008)</td>
<td>Recent C is rapidly found in microbial cytoplasm</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 13C and 14C, tree</td>
<td>Seedling, in the field</td>
<td>Fir</td>
<td>Teste et al. (2010)</td>
<td>Transfer of C between seedlings exists but it is small and it depends on disturbance</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 13C, ecosystem</td>
<td>Tree, <5 m</td>
<td>Pine</td>
<td>Högberg et al. (2010)</td>
<td>Transfer to soil microbes is higher in late than in early summer and is reduced by nitrogen fertilization</td>
</tr>
<tr>
<td>Transfer to soil biota [10–13]</td>
<td>Pulse 13C, crown</td>
<td>Tree, <15 m</td>
<td>Beech, oak, pine</td>
<td>Epron et al. (2011)</td>
<td>Recent C is rapidly found in ectomycorrhiza and microbial cytoplasm</td>
</tr>
</tbody>
</table>

BVOC = biogenic volatile organic compounds.
conducted in mesocosms in the laboratory where the β-radiation emissions resulting from the decay of 14C in the label are high enough to detect, but remain under the safety limits. More recently, the development of AMS has enabled the use of much lower amounts of radioactivity opening the doors for in situ labelling experiments (Carbone et al. 2007, Carbone and Trumbore 2007), despite substantially higher costs per analysed sample compared with LS. Large releases of 14CO$_2$ from a hazardous waste incinerator have unintentionally pulse-labelled a mature deciduous forest (EBIS project, http://ebis.ornl.gov/) and 14C was successfully used to infer residence time and turnover of C in various forest ecosystem compartments, e.g., roots (Joslin et al. 2006, Gaudinski et al. 2009). Another radioactive C isotope, 11C, with very short half-life (about 20.4 min), has proven to be a useful tracer for studying the response of translocation of photosynthates in small plants to fast changes in environmental conditions or to source–sink manipulations. The advantage of 11C is that it allows multiple labelling of the same plants at very short time intervals (Roeb and Britz 1991, Thorpe et al. 2011). However, 11C has been rarely used and only for tree seedlings because the need to produce 11CO$_2$ and detect 11C restricts its use to specifically equipped laboratories (Thompson et al. 1979, Jahne et al. 1998, 2009).

For pulse-labelling trees in the field, one advantage of 14CO$_2$ compared with 13CO$_2$ is that very small amounts of 14CO$_2$ can be supplied to the foliage because of the high sensitivity of AMS and the very weak environmental background for 14C compared with 13C in the atmosphere and in the plant–soil system. In contrast, when trees are pulse-labelled with 13CO$_2$, either the CO$_2$ concentration has to be raised above the ambient level or the CO$_2$ concentration in the labelling chamber has to be decreased prior to adding the label. Nevertheless, because of the high cost of sample preparation and of AMS analyses of 14C, using 13CO$_2$ for pulse-labelling is much more cost effective than using 14CO$_2$, and laws restrict the field use of the radioactive isotopes in many countries. The use of 13CO$_2$ for studying the fate of C in the plant–soil system built upon the lack of restrictions of its use, and the increased availability of stable isotope ratio mass spectrometry since the early 1990s.

Dual labelling with both 13C and 14C is a powerful approach for studying C flux and turnover in pools that differ in turnover rates: the low cost of 13C analysis allows frequent samplings for pools with high turnover rates and 14C can be used for infrequent samplings of pools with slower turnover rates (Lacointe et al. 2004, Carbone and Trumbore 2007). Dual labelling with 13C and 14C can also be used to study bi-directional transfer of C, e.g., between tree seedlings (Simard et al. 1997b, Teste et al. 2010).

Potential and limitations of the pulse-labelling approaches

The pulse-labelling approach is appropriate for studying how fast and where C fixed in photosynthesis moves into the tree and to the soil, especially if the main interest is in the seasonal changes in C allocation dynamics (Table 1). The newly assimilated C is predominantly allocated to active metabolic sinks. These sinks can also attract C remobilized from storage compartments (Paterson et al. 2009). Depending on when the labelling is done and until when the labelled C is further traced, each of these sources can be studied.

Furthermore, pulse-labelling can also estimate the mean residence time and the half-life time of C in compartments. The mean residence time corresponds to the C stock to C flux ratio and it is not an intrinsic property of a compartment. Pools with long residence time have either a large C stock or low exchange rates (or both). Long-term labelling approaches are more appropriate to estimate residence times in pools that turnover slowly.

Long-term labelling experiments have so far been restricted to young, small potted trees because of the high cost of continuously flushing the labelling chamber with isotopically enriched CO$_2$ (Maillard et al. 1994, Dyckmans and Flessa 2001, Dijkstra and Cheng 2007, Guérard et al. 2007, Esperschütz et al. 2009b, Palacio et al. 2011). The free air CO$_2$ enrichment (FACE) studies, which were designed to study the effects of elevated CO$_2$ on ecosystems (Palmroth et al. 2006, Millard et al. 2007) gave opportunities to follow the fate of assimilated C over longer times because industrial CO$_2$ is 13C depleted compared with ambient CO$_2$ (Keel et al. 2006, von Felten et al. 2007, Bader et al. 2009). However, elevated CO$_2$ may shift C partitioning towards belowground biomass compartments, and thus bias estimates of C allocation. Such CO$_2$ effects are still unclear and may depend on the genetically determined development and growth of the species, the developmental stage of the tree and the availability of resources other than C at the site (Körner 2006, Dieleman et al. 2010). In addition, labelling starts when the CO$_2$ treatment begins, therefore any dynamics revealed by the ‘tracer’ corresponds to a transient system that is adapting its growth, allocation and storage patterns in response to elevated CO$_2$, and thus limiting inferences regarding mechanisms for ambient, elevated or slowly changing CO$_2$ concentrations.

Free air systems (IsoFACE) have been specifically developed for labelling small trees in the field (Talhelm et al. 2007) but also tall trees in situ (Grams et al. 2011) for several days or weeks. Although the labelling duration is shorter than typically used in long-term labelling experiments, trees are however exposed to above ambient CO$_2$ concentrations for longer periods than in classical pulse-labelling approaches. While this longer labelling period may be useful for estimating half-lives in pools that turn over slowly and bypasses the effects of diurnal allocation changes, it is of limited value for studying the rapid dynamics of C transfer among pools or compartments.

An alternative pulse-labelling approach based on the injection of dissolved 13C-carbonate into the xylem was recently...
applied on small cedar trees (Powers and Marshall 2011). This technique might become a cheap and easy option for pulse-labelling big trees in remote areas. Xylem-delivered carbonates are thought to provide CO₂ to the leaves where it will be fixed by photosynthesis and transported into the other plant compartments. However, labelled organic C from non-photosynthetic, anaplerotic CO₂ fixation in the trunk might lead to misinterpretations of assimilate transport and transport velocities.

Implementing setups for pulse-labelling

Because of their simplicity, closed systems have been used in most pulse-labelling experiments with trees. A suitable labelling chamber, whatever its size, should be airtight to limit the amount of labelled CO₂ lost and not taken up by the foliage. Since CO₂ and water vapour concentrations inside the chamber will change rapidly over time because of leaf photosynthesis and transpiration, they should be monitored. Furthermore, it is strongly advised to regulate both air temperature and air humidity inside the chamber using air-conditioning devices (Högberg et al. 2008, Plain et al. 2009), since high air temperatures, potentially damaging the photosynthetic apparatus, are expected in closed chambers under high solar radiation. This is one of the reasons why the labelling duration should be as short as possible and, if the cooling capacity is insufficient, should be done quite early in the morning. However, allocation patterns to different foliar C pools (e.g., transient starch storage, respiration, VOC emission) may change over the course of the day and thus need to be considered for data interpretation.

While the injection of ¹³CO₂ tracer can be regulated by mass flow controllers to maintain CO₂ concentrations within the chamber at ambient level, additional unlabelled CO₂ should be injected into the chamber when using ¹⁴CO₂ to compensate for photosynthetic uptake, maintaining CO₂ concentrations at the ambient level. In both cases, mixing of air is needed to enable a uniform distribution of labelled CO₂ inside the chamber (Carbone et al. 2007).

Using open systems could solve many of the problems described above: ambient CO₂ concentrations would not change, enrichment would be constant and chambers would not need to be air-tight, although the consumption of labelled CO₂ would be significantly larger. At optimized air flow, changes in air humidity and temperature inside labelling chambers would be minimal, even under high irradiance. But until now, open systems have been used only in grasslands (Lattanzi et al. 2012) or for long-term labelling of potted, small trees (Dyckmans and Flessa 2001, Esperschütz et al. 2009b, Palacio et al. 2011), although in principle, they are suitable for short-term labelling of several large chambers operating simultaneously on large trees, depending only on the size of the air-generating unit.

In IsoFACE systems, trees are not enclosed in chambers. However, even using 99% ¹³CO₂, the enrichment of the plant that can be achieved is relatively low, while the pulse duration needs to be quite long (5 days in Talhelm et al. 2007). Thus, the costs for labelled ¹³CO₂ are clearly restricting the use of this approach for taller trees. Although costs could be significantly reduced using ¹³C-depleted CO₂ from fossil fuels, the labelling signal would be relatively small compared with that of enriched ¹³CO₂ and again require long labelling periods (Grams et al. 2011).

Whole-tree pulse-labelling

For the practical reasons mentioned above, pulse-labelling experiments have largely been restricted to seedlings and small trees ex situ until recently (Table 1). However, C allocation rules are thought to change with tree age and to be influenced by neighbouring trees (Litton et al. 2007, Poorter et al. 2012), requiring in situ labelling of trees. For several decades, in situ labelling was restricted to individual branches, ever since the pioneering work on mature white oak trees (McLaughlin et al. 1979) and orchard trees (Hansen 1970). The main limitation of branch labelling is the mixing of labelled carbohydrates with a large amount of unlabelled carbohydrates coming from the remaining branches of the crown. Recovery of labelled C at the whole-tree level or in the soil is therefore compromised. Despite its limitation, branch labelling was useful to study the transition from heterotrophy to autotrophy after leaf emergence (Keel and Schädel 2010), branch autonomy (Lacointe et al. 2004) and the mixing of old and new C pools in the branch tissues (Keel et al. 2007), and to reveal spiral translocation paths in the stem of larch saplings (Kagawa et al. 2006b).

Until recently, whole-tree labelling in the field was restricted to short coniferous trees in the boreal forest (Kagawa et al. 2006a, Carbone et al. 2007, Högberg et al. 2008, 2010, Keel et al. 2012) or to woody shrubs in semi-arid ecosystems (Carbone and Trumbore 2007). More recently, the crowns of 10 m tall trees (Plain et al. 2009, Dannoura et al. 2011, Épron et al. 2011) were successfully pulse-labelled. Two options have been proposed for labelling whole trees in the field: large canopy chambers covering 10–50 m² of soil including a small ‘forest ecosystem patch’ with several short trees (Carbone et al. 2007, Högberg et al. 2008) and chambers in which the entire crown of a single tree is enclosed while excluding the soil surface (Plain et al. 2009). Crown chambers allow labelling of trees only one by one and require manpower when moving them from tree to tree, limiting the number of replicates. Moreover, trees are often labelled on different days under different environmental conditions (Dannoura et al. 2011, Épron et al. 2011). In contrast, canopy chambers allow labelling of several trees at the same time (which are in fact pseudo-replicates), although being restricted to short trees. A disadvantage
of canopy chambers is back-diffusion, i.e., labelled CO₂ enters the soil pores during the labelling and diffuses back out several hours later, potentially confounding recovery of labelled CO₂ in belowground respiration (Subke et al. 2009). However, back diffusion of labelled CO₂ can be monitored on root-free collars inside the chamber. Furthermore, labelled CO₂ entering soil pores may be assimilated by the soil microbes (Miltner et al. 2004) or even by the roots through the anaplerotic pathway (Ford et al. 2007, Gessler et al. 2009). A similar artefact could also be expected for bark, into which labelled CO₂ might diffuse during labelling and there be assimilated by bark photosynthesis or anaplerotic reactions.

The duration of the pulse should be as short as possible for a precise determination of time lags between the start of the labelling and the first appearance of labelled compounds in sink compartments or respiratory efflux (Figure 2). The shape of the curve is affected by the duration of the labelling, and this impact is amplified by the radial velocity profile in the sieve tubes of the phloem due to friction along the tube wall (Dannoura et al. 2011) and by the mixing of labelled and unlabelled C. For this reason, we strongly recommend using a constant labelling duration among treatments and replicates, if the main objective is to study the rate of transfer and residence times of C in labile pools. On the other hand, if the main objective is to study allocation among plant compartments, using the same amount of labelled substrate for each tree is defensible, even if it may change the duration of the labelling depending on the photosynthetic activity of the tree (Epron et al. 2011).

The amount of label should be high enough, especially in the field, to be detected in compartments where it will be diluted by a large pool of unlabelled C. This is more challenging with 13CO₂ than with 14CO₂ because of their respective atmospheric backgrounds and detection limits (isotope ratio mass spectrometry (IRMS) versus AMS). Thus, a trade-off exists between the length of the labelling period and the level of enrichment used, since exposing trees to CO₂ concentrations well above ambient levels should be avoided. Increasing the amount of labelled CO₂ without increasing the total chamber CO₂ concentrations could be done by reducing chamber CO₂ concentrations prior to labelling either by removing air inside the chamber (Keel et al. 2007), scrubbing CO₂ with soda lime (Ruehr et al. 2009) or waiting for reductions in CO₂ concentrations through photosynthesis (Plain et al. 2009).

Monitoring the amount of labelled C delivered to the tree

While the isotope composition of CO₂ within the labelling chamber can be known a posteriori by taking air samples from the headspace frequently and analysing these samples, monitoring total CO₂ concentration during the labelling is more challenging because the new generation of infrared gas analysers (IRGAs) is quite specific to 12CO₂ and rather insensitive to 13CO₂ and 14CO₂ (Tohjima et al. 2009). While this is not an issue for 14CO₂ labelling because the amount of 14CO₂ remains low compared with the amount of 12CO₂, the problem is more serious for 13CO₂ labelling, since 13CO₂ is typically the major isotopologue of CO₂ in the chamber during labelling. One option is to use an old generation IRGA and accurately measure total CO₂ concentrations. Another option is using two IRGAs with different 13CO₂ sensitivities. A further option is to use a dual IRGA that measures both 12CO₂ and 13CO₂ concentrations within the same concentration range (Plain et al. 2009). Isotope ratio infrared spectrometers are not necessarily suitable for measuring high 13CO₂ concentration in the labelling chamber, unless the air stream coming from the chamber is strongly diluted with 13CO₂-free air before entering the IRIS.

Tracing the labelled C

The goal of pulse-labelling experiments is to trace the labelled C within the tree–soil system. Technologies are developing fast but sampling issues remain the Achilles heel of these experiments, especially under field conditions.

Expression of isotope composition

While the isotope composition at natural abundance levels is often expressed as a ratio relative to an international reference standard (δ13C, Δ14C), the isotope composition of an enriched compartment can be better expressed as percent atom excess (Dawson et al. 2002). This value is defined as the relative abundance of the heavier isotope in a labelled compartment exceeding the natural isotope abundance in the same unlabelled compartment.
The C isotope composition of the respiratory CO₂ can be quantified (Schnyder et al. 2004, Subke et al. 2009). More frequent efflux on site, thus increasing the measurement frequency at reduced costs (Bahn et al. 2008, Ruehr et al. 2009). The main limitation of this approach is the low frequency of sampling and the analysis costs. Mobile IRMS facilities and flow through chambers are now available including tuneable diode laser systems (e.g., CO₂ Isotope Trace Gas Monitor, TGA 100 A, Campbell Scientific, Logan, UT, USA), quantum cascade laser systems (e.g., CO₂ Isotope Trace Gas Monitor, Aerodyne, Billerica, MA, USA), cavity ring down spectroscopy (e.g., G2131, Picarro, Santa Clara, CA, USA), off axis integrated cavity output spectroscopy (e.g., CCIA-36, Los Gatos Research, Mountain View, CA, USA) or Fourier transform infrared spectroscopy (e.g., Vector 22, Bruker Optics, Ettlingen, Germany), all presenting advantages and disadvantages that are not within the scope of this review. Calibration is an important issue whatever technology is used because a wide range of C isotope compositions is expected. In contrast to IRMS, IRIS does not measure the isotopic composition but the mixing ratios of individual isotopologues (e.g., 12CO₂ and 13CO₂). The working standards should therefore bracket the expected mixing ratios of both isotopologues.

Labelled C recovered in trees

In order to properly trace the labelled C into the bulk material of trees the sampling scheme must allow capturing both the label peak and the long lasting tail of the recovery kinetics. Since an exponential decay of the isotope signal might be expected, it is advisable to take samples frequently at the beginning of the experiment—starting immediately after labelling—and to reduce the sampling rate progressively following a geometric law. Studying allocation will require sampling of foliage, twigs, branches, trunk cores as well as coarse and fine roots. Soil samples are needed for the analysis of labelled C in microbial biomass and soil organisms, in group-specific membrane-bound fatty acids or putatively in nucleic acids.

Special care should be taken into account for the spatial heterogeneity, especially for fine roots retrieved from soil cores (Endrulat et al. 2010). Two main points need to be considered when sampling fine roots in the field: dead fine roots should be disregarded and the living roots sampled should only belong to the labelled trees. The labelled trees can be isolated for at least several months before labelling by digging a trench around the tree. The trench needs to be lined with a polyethylene foil and refilled with soil. This approach ensures that all roots and root exudates within the known soil volume originate from the isolated tree and that all active roots of the labelled tree are contained inside this trenched area (e.g., Plain et al. 2009). However, regrowth of roots to re-establish the root-to-shoot ratio might take much longer depending on the intensity of the disturbance. The size of the delimited area should be large enough to avoid any water stress resulting from a reduction of the size of the root system. This may not be possible with species that spread their roots far from the trunk or with deep-rooting species. The problem of sampling roots of unlabelled trees is also avoided when using large chambers that cover e.g., 50 m² or more of soil, instead of single crown chambers. Högberg et al. (2008) assessed the influence of unlabelled trees by labelling the soil in the studied central area of the plots with 15N, and traced the 15N label in the tree canopies inside and just outside the plots, assuming that the transfer of N in acropetal direction was most likely associated with the transfer of C in the reverse direction. A more laborious option is to genetically identify the target tree species from root fragments (Endrulat et al. 2010).

Plant organs are composed of various C pools of different ages and with different residence times, and it is worthwhile to study each pool individually to assess the dynamics of each
pool and the rates of exchange between the pools. It is at least interesting to isolate the soluble fraction that contains a mixture of sugars, organic acids and amino acids (Brandes et al. 2006, Ruehr et al. 2009), since starch and structural C have different turnover rates. It is also an option to collect phloem sap samples either directly by making shallow incision into the bark (bleeding techniques) in suitable species, by exudation of soluble compounds from small pieces of bark tissues punched from the trunk or by using aphids as sap collectors (Yoneyama et al. 1997, Gessler et al. 2004, Dannoura et al. 2011).

Labelled C recovered in soil microorganisms

Because recent photosynthates are rapidly transferred to the soil microbial compartments (Högberg and Read 2006, Högberg et al. 2010), either directly through the mycorrhizal network or through root exudation, labelled C is expected to be retrieved in soil soluble organic matter and in the microbial biomass. Soluble organic C can be extracted with a weak saline solution (typically K₂SO₄) from fresh soil samples. Microbial C can also be extracted from fresh soil samples that have previously been fumigated with chloroform to disrupt the microbial membranes (Vance et al. 1987). The difference in labelled C between fumigated and non-fumigated soil samples is supposed to be the microbial C released from microorganisms that have been destroyed by the fumigation (Rangel-Castro et al. 2005b, Ruehr et al. 2009, Epron et al. 2011). This approach does not discriminate between fungi, bacteria and Archaea. The ¹³C transferred to the mycorrhizal hyphae network can be retrieved in soil cores surrounded by an appropriate nylon mesh (Johnson et al. 2002, Epron et al. 2011). Molecular approaches to trace the ¹³C or ¹⁴C in nucleic acids (Ostle et al. 2003, Rangel-Castro et al. 2005a), amino-sugars or fatty acids (Treonis et al. 2004, Amelung et al. 2008, Denef et al. 2009, Esperschütz et al. 2009b, Högberg et al. 2010) are promising to identify the microbial groups that strongly respond to tree photosynthesis. They are, however, challenging in the field because of the dilution of the tracer within the large soil C pool (Griffiths et al. 2004). While pulse-labelling experiments are normally sufficient for tracing ¹³C from plants to phospholipid fatty acids of microbial groups, longer labelling periods might be required for probing ¹³C in microbial DNA and RNA for the identification of functional or taxonomic groups (Neufeld et al. 2007) in forest soil.

Dynamics of photosynthates in tree and soil compartments

Tracing labelled C after pulse-labelling a tree allows quantifying at least three important aspects of whole-plant C metabolism: the rate of transfer of C substrates between compartments, the residence time of C in these compartments and the number of kinetically distinct pools in a metabolic network. Robust hypotheses accounting for the effects of environmental factors on—and species differences in—the rate of transfer have already emerged. An increase in the measurement frequency of labelled C in the CO₂ efflux combined with compartmental analysis of tracer time courses is promising for characterizing the half-life and the relative importance of the different substrates that fuel respiration.

The pattern of recovery: what a shape can tell

The shape of the recovery of labelled C in a compartment or in the respiratory efflux has a few distinct phases (Figure 2). Tracer appearance is typically delayed relative to the labelling pulse (time lag). Then, the amount of labelled C increases until a maximum is reached (peak), and subsequently decreases more or less exponentially until eventually no tracer is left (new isotopic equilibrium).

The time lag can vary from a few minutes to several hours or days. This, of course, depends on the distance between the source leaves and the observed sink. It also depends on the rate of transport of C within the plant and into the soil. Recent studies show that transport rates vary depending on species, phenology and environmental conditions (Ruehr et al. 2009, Dannoura et al. 2011, Epron et al. 2011).

The shape of tracer time courses reflects both (i) the extent to which labelled C has mixed with unlabelled C pools before arriving in the sampled compartment (i.e., the number and turnover rate of those mixing pools), and (ii) the turnover rate of the observed compartment itself. Thus, time courses characterized by sharp and rapid increases and decreases are indicative of pools closely associated to (mainly fed by) current assimilates. As the label is transferred along the translocation path, for instance, from the top of the tree to belowground sinks (Dannoura et al. 2011), the shape of the tracer time course is changing. The often observed slower rates of increase, the lower and broader peaks, and the slower rates of decrease reflect the fact that the tracer is mixing with more and more pools as it travels downwards.

A clear record of the shape of the peak requires a high measurement frequency, in particular before and after the maximum when rates of change are fast. For compartments close to C assimilation, such as soluble carbohydrates in photosynthetic leaves, this implies that sampling should ideally start during labelling. It also requires a sustained sampling effort throughout the exponential decrease, so that all acting pools can be detected. For tissues with a slow turnover rate, such as the structural biomass of roots, sampling should thus last for several months (although not necessarily at high frequency).

Of course, the actual values of tracer content are strongly affected by the duration and enrichment of the labelling pulse. Therefore, direct comparisons of tracer contents among...
treatments, or even among individuals within a given treatment, are often meaningless. Yet, the parameters that can be derived from the shape of the tracer timecourse—i.e., the time lag, the time to peak, the rate of exponential decrease and the time to new isotopic equilibrium—would be invariant.

Variations in the rate of C transfer among species

The rate of C transfer (flux [8] in Figure 1) is often calculated from the time lag between C uptake (i.e., labelling time) and the recovery of the label in the CO₂ efflux in the soil, or from differences in time lags between the start of the labelling and the appearance of ¹³C in CO₂ efflux measured at different positions along the trunk or along a coarse root (Dannoura et al. 2011). The rate of C transfer in the tree as well as between the canopy and the soil varies greatly among different labelling experiments and numerous factors may account for this large range of variation.

One source of variation that explains differences in time lags is undoubtedly the time resolution of measurements. The time lag between uptake and recovery also depends on the size of the tree, i.e., on the distance between the source and the sink, and on the species (Figure 3a). There are indeed clear species differences with coniferous species exhibiting on average 10 times lower rates of label transfer than broad-leaved species (Thompson et al. 1979, Schneider and Schmitz 1989, Jahnke et al. 1998, Högb erg et al. 2008, Plain et al. 2009, Dannoura et al. 2011, Table 2). Pulse label experiments thus confirm observations based on the transfer of weather-induced change in photosynthetic isotope discrimination signals (Kuyakov and Gavrichkova 2010, Mencuccini and Hölttä 2010) and most likely reflect differences in phloem anatomy (Jensen et al. 2012). When the rate of transfer to the trunk is estimated with the same method for trees of similar size, the relation between the rate of C transfer and the time lag of peak ¹³CO₂ efflux from the soil differs markedly between broadleaved species (oak and beech) and pine (Figure 3b). Differences in soil macroporosity were unlikely to explain the differences in the rate of transfer in this study. The results suggest a longer retention time in the pine foliage or the roots that may be due to strong mixing of new, labelled C with old unlabelled C.

Responses of the rate of transfer to environmental factors

The velocity itself might also be size dependent, with higher rates of transfer in tall compared with small trees. For instance, ¹³C label in soil microbial biomass was detected one day after labelling in beech saplings of 0.5 m height (Ruehr et al. 2009) as well as in 10 m tall beech trees (Épron et al. 2011). This finding is substantiated by the observation that in beech the velocity of C transfer in the trunk is positively related to the diameter of the tree (Dannoura et al. 2011). The velocity of C transport also varies within a tree, with higher speed at the top of the trunk than at the bottom.

The rate of transfer is also strongly related to environmental conditions and is decreasing with lower temperature and soil water content (Ruehr et al. 2009, Barthel et al. 2011, Dannoura et al. 2011). In contrast, shade did not affect the rate of C transfer in pine (Warren et al. 2012). Changes in phloem sap viscosity and changes in the turgor pressure gradients between source and sink organs are thought to account for these changes. The changes in turgor gradients are mediated by tree transpiration, xylem water potential and by the activity of source and sink organs where phloem loading and unloading occur. However, the processes that control the sink activity and the feedbacks on source activity, and therefore the long distance transport of C in the tree, are still poorly understood at the whole-plant level.

Fast belowground C transfer

Whatever the species differences in transport velocity are, all results highlight a rather fast transfer of recent assimilates to the soil biota (fluxes [10-13] in Figure 1). The labelled C is
To what extent this finding is due to the lower C assimilation activity is not yet clear. (Gorissen et al. 2004, Ruehr et al. 2009, Barthel et al. 2011). Decreased (even cancelled) C transfer to soil microorganisms pools of soil organic matter. Most interestingly, drought stress proximity to root tips, and less important for those feeding on older seedlings (Simard et al. 1997). Mycorrhizal network can further be shared among competing seedlings (Leake et al. 2001). Labelled C transferred to the growing mycorrhizal mycelia were an active C sink for pine needles (Thompson et al. 1979, Ruhr et al. 2009, Epron et al. 2011). The likely mechanism for this to happen is that labelled C is rapidly captured by symbionts and/or exuded by the mycorrhizal roots and taken up by soil microorganisms.

Among soil biota, fungi (especially ectomycorrhizal fungi) and Collombola were rapidly and strongly labelled, compared with bacteria, Acari and Enchytraeidae (Esperichz et al. 2009b, Heinonsalo et al. 2010, Högberg et al. 2010). A fast transfer of labelled C was observed in litter patches, where growing mycorrhizal mycelia were an active C sink for pine seedlings (Leake et al. 2001). Labelled C transferred to the mycorrhizal network can further be shared among competing seedlings (Simard et al. 1997a, 1997b, Teste et al. 2010).

The challenge now is to quantify the importance of this flux for the metabolism of both plants and microorganisms (Grimoldi et al. 2006). Most probably, the transfer of labelled C from the plant is most relevant for microorganisms living in close proximity to root tips, and less important for those feeding on older pools of soil organic matter. Most interestingly, drought stress decreased (even cancelled) C transfer to soil microorganisms (Gorissen et al. 2004, Ruehr et al. 2009, Barthel et al. 2011). To what extent this finding is due to the lower C assimilation rate, to changes in C partitioning, or to changes in microorganism activity is not yet clear.

The residence time in tree and soil

The rate of decrease of the amount or the fraction of labelled C recovered in a compartment or a flux after the peak can often be described by an exponential function:

\[C(t) = C_0 \exp(-kt) \]

where \(t \) is the time after the peak, \(C_0 \) the quantity or fraction of labelled C at peak time, \(k \) is the rate constant of tracer loss and \(C(t) \) the quantity or fraction of labelled C at time \(t \) (Figure 2). Assuming that the system is in a steady state (no change in size), that the process follows first-order kinetics (fluxes are directly proportional to pool sizes), that only one kinetic pool is acting, and that tracer disappearance is only governed by tracer efflux, the mean residence time (\(\tau \), the average time which C atoms reside in a reservoir) and the half-life (\(t_{1/2} \), the time required to exchange 50% of the C atoms in a reservoir) can be calculated (Derrien and Amelung 2011) as

\[\tau = \frac{1}{k} \quad \text{and} \quad t_{1/2} = \frac{\ln(2)}{k} \]

Mean residence time and half-life are both important attributes of the C dynamics. It is therefore important that the caveats for their estimation are explicitly stated. For most studies, the assumption that the system is in steady state and follows first-order kinetics is only a good approximation. Moreover, the condition of a pool which only loses tracer is not realized for belowground compartments (roots, microbial biomass, soil), or for structural compounds, which typically exhibit bell-shaped patterns of label recovery (Endrulat et al. 2010, Epron et al. 2011). Furthermore, analysing a single physical compartment does not assure that the tracer is present in a single kinetic pool. For instance, leaves contain (at least) three kinetically contrasting pools: labile, transiently stored and structural compounds (Figure 1). Therefore, it is important that fairly complete records of tracer content are available (i.e., from the beginning of the pulse and for a chase period of adequate duration) so that the presence of slow pools can be detected and accounted for when estimating mean residence time and half-life.

Differences in half-lives between tree compartments

The half-life of labelled C in the phloem sap is similar between deciduous broadleaved species and evergreen coniferous species (Table 3). In pine, \(t_{1/2} \) values in winter are more than twice those estimated for the growing season. The half-life in phloem sap is typically short, indicating its transport function from the canopy to sink organs (Högberg et al. 2008, Dannoura et al. 2011, Warren et al. 2012). For similar reasons, the half-life of labelled C in the soil solution is short (Esperichz et al. 2009b) and the labelled C is sometimes undetectable due to a rapid absorption by the soil microorganisms (Epron et al. 2011). The amount of labelled C recovered in the mature foliage decreases

Table 2. Rates of C transfer in broadleaved and coniferous tree species, as estimated from pulse-labelling experiments.

<table>
<thead>
<tr>
<th>Species</th>
<th>Methods</th>
<th>References</th>
<th>Velocity (m h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash, elm</td>
<td>¹³C (seedlings)</td>
<td>Thompson et al. (1979)</td>
<td>0.3–6.0</td>
</tr>
<tr>
<td>Ash, rowan</td>
<td>¹³C (seedlings)</td>
<td>Jahnke et al. (1998)</td>
<td>0.3–1.3</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (10 m tall trees)</td>
<td>Plain et al. (2009)</td>
<td>1.0 (late summer)</td>
</tr>
<tr>
<td>Beech, oak</td>
<td>¹³C (10 m tall trees)</td>
<td>Dannoura et al. (2011)</td>
<td>0.2–1.2 (over the growing season)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (saplings)</td>
<td>Barthel et al. (2011)</td>
<td>0.4 (control)–0.1 (drought)</td>
</tr>
<tr>
<td>Coniferous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce, pine</td>
<td>¹³C (seedlings)</td>
<td>Thompson et al. (1979)</td>
<td>0.1</td>
</tr>
<tr>
<td>Larch, boreal</td>
<td>¹⁴C (saplings)</td>
<td>Schneider and Schmitz (1989)</td>
<td>0.1–0.2 (over the growing season)</td>
</tr>
<tr>
<td>Pine (boreal)</td>
<td>¹³C (2 m tall trees)</td>
<td>Högberg et al. (2008)</td>
<td>0.1 (late summer)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (10 m tall trees)</td>
<td>Dannoura et al. (2011)</td>
<td>0.1–0.2 (over the year)</td>
</tr>
</tbody>
</table>

Tree Physiology Volume 32, 2012
Half-life of labelled C in respiratory substrate pools

The decrease in labelled CO₂ in the respiratory flux may be used as a proxy for respiratory substrates. It should be kept in mind that several differently labelled substrates can contribute to respiration depending on the time of the day. The overall pattern of tracer dynamics in respired CO₂ is often best approximated by using two (or more) exponential functions. Table 3. Half-life of labelled C in mature leaves, phloem sap and respiratory substrate pools contributing to soil CO₂ efflux (assuming either one or two pools), as estimated from pulse-labelling experiments.

<table>
<thead>
<tr>
<th>Species</th>
<th>Methods</th>
<th>References</th>
<th>Half-life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phloem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine (boreal)</td>
<td>¹³C (2 m tall trees)</td>
<td>Högberg et al. (2008)</td>
<td>1.3 (late summer)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (7 m tall trees)</td>
<td>Warren et al. (2012)</td>
<td>4.7 (late summer)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (10 m tall trees)</td>
<td>Dannoura et al. (2011)</td>
<td>0.4–3.4 (over the year)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (10 m tall trees)</td>
<td>Dannoura et al. (2011)</td>
<td>0.4–1.7 (over the growing season)</td>
</tr>
<tr>
<td>Oak</td>
<td>¹³C (10 m tall trees)</td>
<td>Dannoura et al. (2011)</td>
<td>0.9–1.3 (over the growing season)</td>
</tr>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine (boreal)</td>
<td>¹³C (2 m tall trees)</td>
<td>Högberg et al. (2008)</td>
<td>1.3 (late summer)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (7 m tall trees)</td>
<td>Warren et al. (2012)</td>
<td>0.5 (late summer)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (10 m tall trees)</td>
<td>Unpublished¹</td>
<td>1.4–3.6 (over the year)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (10 m tall trees)</td>
<td>Unpublished¹</td>
<td>1.3 (over the growing season)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (saplings)</td>
<td>Ruehr et al. (2009)</td>
<td>1.7 (control)–2.3 (drought)</td>
</tr>
<tr>
<td>Soil CO₂ efflux—1 pool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poplar</td>
<td>¹⁴C (3 m tall trees)</td>
<td>Horwath et al. (1994)</td>
<td>2.9–4.1 (over the growing season)</td>
</tr>
<tr>
<td>Spruce (boreal)</td>
<td>¹⁴C (<4 m tall trees)</td>
<td>Carbone and Trumbore 2007</td>
<td>10 (late summer)</td>
</tr>
<tr>
<td>Pine (boreal)</td>
<td>¹³C (2 m tall trees)</td>
<td>Högberg et al. (2008)</td>
<td>1.5 (late summer)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (saplings)</td>
<td>Barthel et al. (2011)</td>
<td>0.8 (control)–1.7 (drought)</td>
</tr>
<tr>
<td>Soil CO₂ efflux—2 pools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub (semi-arid)</td>
<td>¹³C (shrubs)</td>
<td>Carbone and Trumbore 2007</td>
<td>2.6–3.1 (over the growing season)</td>
</tr>
<tr>
<td>Beech</td>
<td>¹³C (10 m tall trees)</td>
<td>Epron et al. (2011)</td>
<td>4.8–13.1 (over the growing season)</td>
</tr>
<tr>
<td>Oak</td>
<td>¹³C (10 m tall trees)</td>
<td>Epron et al. (2011)</td>
<td>6.0–7.7 (over the growing season)</td>
</tr>
<tr>
<td>Pine (temperate)</td>
<td>¹³C (10 m tall trees)</td>
<td>Epron et al. (2011)</td>
<td>4.9–33.6 (over the year)</td>
</tr>
</tbody>
</table>

¹Details about this experiment can be found in Dannoura et al. (2011).
mathematical analyses. For instance, compartmental analyses have proven to be an effective and elegant tool to analyse the system supplying C substrates to respiration in ryegrass (Lehmeier et al. 2008, 2010a, 2010b). In this approach, conceptual models including fast turnover, metabolically active pools and storage pools (Figure 4, adapted from Epron et al. 2011) are translated into a set of differential equations that are fitted to the kinetics of labelled C to estimate the half-life of pools and their relative contribution to respiration. Compartmental modelling was used to account for the mixing of stored C and newly assimilated C after pulse-labelling of trees with 13C (Epron et al. 2011). However, the situation encountered by trees in the field under fluctuating climatic conditions is rather complex and the limited numbers of pools (usually two or three) may not fully reflect physiological processes.

Carbon partitioning

For better understanding of processes underlying C allocation dynamics it is important to disentangle the effects of phenology from those mediated by environmental factors, which both affect sink and source activities. Because trees are perennial species, pulse-labelling experiments also provide insights into the contribution of old and current assimilates to growth and respiration in sink organs.

Scaling labelled contents to trees

The amount of labelled C recovered in one compartment is obtained by multiplying the percent atom excess of the heaviest isotope by the C content of the biomass of this compartment. Knowing the amount of labelled C allocated to fine roots is challenging: (i) because of the lateral and vertical extension of the root system it is difficult to obtain representative samples, (ii) because the tracer tends to concentrate in the finer, easier-to-lose, root tips and (ii) because of difficulties with sorting live and dead fine roots (Ruehr et al. 2009, Endrulat et al. 2010). Scaling the amount of labelled C recovered in respiration chambers to whole trees is also prone to large uncertainties. Trunk respiration can vary with diameter and position in the canopy (Ryan et al. 1996, Damesin et al. 2002). Also soil respiration is typically characterized by high spatial variability (See and Buchmann 2005, Ngao et al. 2012). Thus, C partitioning calculations that have been reported so far are likely associated with large uncertainties, but nevertheless provide important qualitative information.

Partitioning the total amount of labelled C assimilated

Because C partitioning refers to the fraction of labelled C in one compartment, the total amount of labelled C assimilated by the tree should be known. While it is possible to estimate the total amount of labelled C delivered to the tree (see above), it is less straightforward to quantify the amount that has been actually assimilated (flux [1] in Figure 1).

One option is to sum up the labelled C recovered in all compartments. This can be simplified by collecting leaves immediately after labelling when most of the tracer has not yet transported to other organs. The amount of labelled C in any compartment will thus be expressed relative to the initial amount recovered in the foliage (Keel et al. 2007, Plain et al. 2009, Endrulat et al. 2010). In order to account for the heterogeneity of leaf photosynthetic activity in the crown, a stratified sampling strategy is needed. Typically, the crown can be virtually separated into bottom, middle and upper parts, for which foliage can be sampled and analysed separately. In the case of evergreen species, the sampling design should also account for the different needle cohorts. The proportion of foliage mass belonging to each part of the crown should be known to upscale the C isotope composition to the crown level. In addition, a good mixing of air in the labelling chamber is a prerequisite to ensure that the heterogeneity in foliar C isotope composition reflects the heterogeneity of leaf photosynthetic activity. This approach provides a conservative estimate of the amount of labelled C taken up by the crown because respiratory losses and export of carbohydrates take place already during the labelling. Nonetheless, for herbaceous vegetation, Lattanzi et al. (2012) estimated that for labelling periods shorter than 6 h the underestimation is <10% of assimilated C. This is because the tracer mixes rapidly with several metabolic pools, and consequently is not respired or allocated immediately after its assimilation.

Another option to estimate the total amount of labelled C assimilated by the tree is to calculate uptake from photosynthesis measured with a canopy chamber before and after labelling, or from using data from a nearby eddy flux tower.
This approach should account for the 13CO$_2$/12CO$_2$ mixing ratio during labelling and requires that that during labelling leakage is negligible.

Environmental controls of C allocation

The functional-balance concept predicts that C partitioning is tuned to maintain an optimal internal resource status, like a constant biomass C:N ratio (Reynolds and Chen 1996, Franklin et al. 2012). As expected from this concept, the amount of labelled C allocated belowground after a 1-year chase period following pulse-labelling was 60% lower in nitrogen (N)-fertilized plots compared with unfertilized plots in a boreal pine forest (Högberg et al. 2010). In contrast, N fertilization did not affect labelled C partitioning in potted young beech saplings (Dyckmans and Flessa 2001), but affected the shift in C allocation to belowground compartments that is observed in response to fumigation with elevated CO$_2$ concentration (Dyckmans and Flessa 2002). Elevated CO$_2$ concentration increased the amount of labelled C recovered in the microbial biomass in trembling aspen, suggesting that exudation was stimulated (Mikan et al. 2000).

Ozone was found to favour C allocation belowground at the expense of leaves in potted silver birch trees (Kasurinen et al. 2012) and allocation to the fungal symbiont in mycorrhizal pine seedlings (Andersen and Rygiewicz 1995). However, no clear patterns were observed in 60-year-old European beech and Norway spruce trees (Andersen et al. 2010). Allocation of photosynthates to the stem respiration (flux [2w] in Figure 1) increased the amount of labelled C recovered in the microbial biomass in trembling aspen, suggesting that exudation was stimulated (Mikan et al. 2000).

Disentangling the influence of seasonal variations in weather and species phenology

When interpreting seasonal patterns of C allocation it is important to disentangle the effects of phenology, as primarily driven by biological controls, and those directly caused by environmental factors. This is especially the case for seasonally variable parameters like temperature and soil water content.

Variations in sink strength are important drivers of the seasonal dynamics of C allocation patterns (Table 1, Lippu 1994). Bud break and sprouting (flux [4i] in Figure 1) in spring divert an important fraction of C assimilated by older foliage in evergreen species. Indeed, acropetal transport of labelled C (flux [9] in Figure 1) to the growing needles and shoots was reported for larch (Schneider and Schmitz 1989), and it was demonstrated that bud break and sprouting in spring was exclusively supplied by the recent photosynthates of previous year’s needles in pine (Hansen and Beck 1994, Lippu 1998). Fruiting is another seasonally fluctuating C sink. This was nicely exemplified in beech and hornbeam for which almost all the labelled C assimilated by the fruit-bearing branches was allocated to their infructescences (Hoch and Keel 2006). Production of sporocarps by mycorrhizal fungi is also an important C sink (flux [10] in Figure 1) at the end of the growing season, which diverts recent assimilates in pine (Högberg et al. 2010). In boreal species, there is strong evidence that C allocation shifts from aboveground to belowground from the beginning to the end of the growing season (Lippu 1994, Kagawa et al. 2006a, Högberg et al. 2010), probably related to the delayed summer warming of the soil compared with the air.

At the whole-tree level, C allocation patterns are highly dynamic and change with the seasons (Figure 5), indicating that priorities among sink organs for recent assimilates exist at this time scale. Seasonal shifts in C allocation may also be expected in tropical species encountering a transition between wet and dry seasons. We are not aware of any labelling experiments addressing this question so far.

Seasonal changes in allocation to storage

An important flux of labelled C into storage pools (flux [3] in Figure 1) typically occurs at the end of the growing season (Hansen et al. 1996, Lacointe et al. 2004, Kuptz et al. 2011). It is still unclear as to whether C reserves are a passive pool or an actively regulated sink (Sala et al. 2012). For example, 80% of the newly assimilated C was allocated to aboveground growth in July (leaves and stems) while the same proportion was stored in the stump when coppiced chestnuts were labelled in October (Mordacq et al. 1986). A similar seasonal shift in C allocation was reported for young poplar trees (Horwath et al. 1994). In contrast, results obtained in the field on 20-year-old beech showed that C allocation to soil CO$_2$ efflux, and to respiration and biomass of fine roots and microbes, peaked in summer (Epron et al. 2011) and thus did not compete with C allocation to storage that occurred at the end of the summer (Kuptz et al. 2011). Seasonal shifts in C allocation belowground were not observed in spruce, sessile oak and maritime pine (Epron et al. 2011, Kuptz et al. 2011). The discrepancy among species may reflect differences in the contribution of stored carbohydrates that might buffer the seasonal changes in the partitioning of newly fixed C in some temperate species (Epron et al. 2011, Figure 5).

Besides seasonal changes in allocation to storage compartments in perennial organs, transient storage also occurs at a daily time scale, especially in the foliage (fluxes [3I and 6I] in Figure 1). For example, it was shown that respiration of beech leaves was supplied by a mixture of current and stored carbohydrates (Nogués et al. 2006). In some species, the emission of biogenic volatile organic compounds (BVOC, flux [7] in Figure 1) is an additional sink of recently assimilated C, which is mostly active in summer when light and temperature are high (Loreto et al. 1996). However, the fraction of BVOC emissions originating from recent photosynthates or from stored C may vary among species (Ghirardo et al. 2010). In
view of the diurnal changes of the use of new C for storage in starch, respiration or exportation, future studies could address the question of how the timing of labelling may influence the fate of C.

Contribution of stored C to growth and respiration

When a pulse of labelled C is provided to a tree, the recently assimilated C has an isotopic composition that differs from the isotope signature of the unlabelled stored C. Pulse-labelling experiments were thus useful to disentangle the contribution of new (flux [1] in Figure 1) versus old/stored C [6] to growth [4] or to respiration [2]. While the contribution of recently assimilated and stored C to trunk and coarse root respiration was almost constant in spruce and was dominated by old carbohydrates, it changed seasonally in 60-year-old beech trees (Kuptz et al. 2011). Trunk and coarse root respiration are dominated by stored C when the C demand to sustain shoot growth uses most of the recently assimilated C (Figure 5).

Daily oscillations of the isotope signal after pulse-labelling in trunk CO₂ efflux were ascribed to diurnal changes in the C sources fuelling respiration, i.e., remobilization of labelled starch during the night versus use of unlabelled newly assimilated C during daytime (Plain et al. 2009, Barthel et al. 2011). In trees, however, diurnal changes in C sources could be confounded by internal CO₂ transfer if, for instance, CO₂ produced belowground affects the composition of trunk CO₂ efflux. Departures of root-produced CO₂ in the transpiration stream that is contributing to trunk CO₂ efflux have indeed been reported on several occasions (Teskey and McGuire 2007, Aubrey and Teskey 2009, Grossiord et al. 2012).

Sprouting in deciduous broadleaved species relies more or less on C that has been assimilated during the previous year and stored overwinter, questioning the concept of C autonomy of branches in spring (Lacointe et al. 2004, Keel et al. 2007). The leaves of 3-year-old potted beech were composed of 50–70% newly assimilated C, highlighting a significant contribution of stored C, especially for the initial synthesis of acid detergent-fibre lignin (Dyckmans et al. 2002). This was also observed in a deciduous coniferous species (larch) for which about half the C in new needles was derived from stored C (Kagawa et al. 2006), and the contrast between evergreen and deciduous coniferous species was demonstrated by comparing larch and pine in a FACE system (von Felten et al. 2007). Labelled C that was stored over winter was also found in new fine roots that grew in the spring (Endrulat et al. 2010). Similarly, it was shown in a FACE experiment that fine root and mycorrhiza growth in scrub oaks were partly supported by C stored in rhizomes (Langley et al. 2002), in agreement with a large-scale ¹⁴C labelling showing that stored C accounted for 55% of new root growth in a mixed hardwood forest (Gaudinski et al. 2009).

Wood formation results also from a mixture of recent and stored C in a proportion that varies among species, the relative contribution of stored C being greater in ring-porous than in diffuse-porous species (Keel et al. 2006, Palacio et al. 2011). This difference is thought to be related to the difference in their ability to restore hydraulic conductivity after winter embolism (Barbaroux and Bréda 2002). A different contribution of old and current assimilates to early wood and late wood formation was found in larch, early wood being more dependent on stored C than late wood (Kagawa et al. 2006).

![Figure 5. Conceptual representation of seasonal changes in C allocation in temperate and boreal trees, accounting for the use of recently assimilated C versus stored C. Black arrows indicate fluxes of recently assimilated C, white arrows fluxes of C remobilized from storage and grey arrows a mixture of both. The width of arrows indicates sink or source strength. During spring, sprouting (foliage growth and foliage respiration) is an important sink for new C in evergreen species (a) while storage remobilization largely contributes to sprouting in deciduous species (b). Stem growth, root growth, stem respiration and root (and associated symbionts) respiration are mainly sustained by storage remobilization. In summer, foliage growth almost stops in many species. Stem and root growth and respiration are major sinks of C and are either (c) mainly fuelled by new C (e.g., beech) or (d) by a mixture of old and new C (e.g., spruce, oak). In autumn, storage build-up is the major sink of recent photosynthate (e). During winter (f), photosynthesis and growth are either low (evergreen species) or zero (deciduous species), and respiration is fully sustained by storage remobilization.](image-url)
resource use in trees. The seasonal variation of storage and remobilization and C
abundance approaches might give additional insights into environmental constraints (ozone, drought) and differences in activities of sink organs. Growth and respiration rely both on environmental and endogenous controls on transfer rates and lighted the seasonality of allocation patterns as affected by environmental and endogenous controls on transfer rates and activities of sink organs. Growth and respiration rely both on recent photosynthates and on stored C, in a proportion that depends on the season and that varies among species. Environmental constraints (ozone, drought) and differences in resource availability (soil water, soil fertility and light) have an impact on C allocation within the tree and on soil biota, and can strongly affect the rate of C translocation.

This review has identified several open research questions which should be of high priority on the research agenda. (i) Source–sink relations: shading tree crowns to manipulate source activity (Warren et al. 2012) and varying fruit load (Palmer 1992) or tapping intensity (Chantuma et al. 2009) to manipulate sink demand, combined with labelling experiments, will offer promising perspectives to better understand biological controls on C allocation to storage organs and potentially differentiate between sink- versus source-driven controls. (ii) C allocation to secondary metabolism: insect and pathogen attacks play a major role in drought and heat wave-induced tree mortality (McDowell et al. 2011); however, patterns of C allocation to defence compounds (flux [5] in Figure 1) have not yet been considered. (iii) Response of C allocation to environmental change: combining labelling and ecosystem manipulation approaches like fertilization, water exclusion or warming experiments will be useful for disentangling the effects of environmental factors versus phenology, both being confounded when addressing seasonal variations of allocation patterns. (iv) Seasonality versus phenology effects in and across different biomes: there is a particular need for pulse-labelling experiments on tropical trees. They play a major role in the global C cycle (Malhi 2010) and have a distinct phenology compared with temperate and boreal tree species. (v) C–N interactions: dual C and N labelling experiments will not only deepen our understanding of the coupling of C and N dynamics in trees (Millard and Grelet 2010), but will also improve the parameterization of coupled biogeochemical cycles in forest C balance models (Chapin et al. 2009).

New tools like compound-specific isotope analysis (CSIA; Meier-Augenstein 1999, Godin et al. 2007), proton-transfer reaction mass spectrometry (PTR-MS; Ghirardo et al. 2010) or nano-scale secondary ion mass spectrometry (nano-SIMS; Herrmann et al. 2007, Hatton et al. 2012), which have become available only relatively recently, will permit tracing isotopes into specific C compounds and will enable micro-scale localization of labelled C in tree tissues and in the soil. This will facilitate the study of a range of topics, including the within-tree translocation of C, the exudation of organic C compounds by the rhizosphere or their emission to the atmosphere. Besides pulse-labelling, long-term labelling of trees in the field will improve our knowledge on residence times and turnover rates of C in long-lived pools of organic matter in perennial tree organs and in soils, both crucial for C sequestration (Körner 2006).

Finally it should be noted that much of the available knowledge has been gained in pulse-labelling experiments using relatively small trees, while in situ whole-tree labelling experiments are still scarce although urgently needed to improve our understanding of environmental and physiological controls on C allocation.

Sources of ‘new’ versus ‘old’ C

In most of the above-mentioned studies, labelled C is referred to as ‘new C’ and interpreted as derived from ‘current photosynthesis’ or ‘recent assimilates’ while unlabelled C is referred as ‘old C’ and interpreted as derived from ‘stores’ or ‘reserves’. This is convenient but not strictly valid, as there is no invariant relationship between labelled and unlabelled substrates and the sources supplying a sink (Farrar and Gunn 1998, Lattanzi et al. 2005). After its assimilation, the tracer starts to mix within the plant metabolic network, moving through several physical and biochemical compartments. Thus, while part of the tracer goes directly to the sink (flux [8] in Figure 1), part of it is incorporated in transient stores (e.g., chloroplastic starch, flux [3l]), amino acids, proteins, and longer-term stores [3w and 3r]. When mobilized [6], these pools supply labelled C. This also holds for unlabelled C, which is not completely derived from stores but is also present in labile pools, which are closely related to current photosynthesis. Therefore, inferences based on a simplified definition of ‘new’ versus ‘old’ C require caution and, ideally, need to be informed by additional knowledge of the studied system.

Conclusion

Pulse-labelling experiments have provided unique and highly valuable information on the transfer and allocation of C in trees. They have revealed a fast transfer of assimilated C from the foliage to belowground, with species-specific velocities, which are likely due to phloem anatomy. Experiments have also highlighted the seasonality of allocation patterns as affected by environmental and endogenous controls on transfer rates and activities of sink organs. Growth and respiration rely both on recent photosynthates and on stored C, in a proportion that depends on the season and that varies among species. Environmental constraints (ozone, drought) and differences in resource availability (soil water, soil fertility and light) have an impact on C allocation within the tree and on soil biota, and can strongly affect the rate of C translocation.

This review has identified several open research questions which should be of high priority on the research agenda. (i) Source–sink relations: shading tree crowns to manipulate source activity (Warren et al. 2012) and varying fruit load (Palmer 1992) or tapping intensity (Chantuma et al. 2009) to manipulate sink demand, combined with labelling experiments, will offer promising perspectives to better understand biological controls on C allocation to storage organs and potentially differentiate between sink- versus source-driven controls. (ii) C allocation to secondary metabolism: insect and pathogen attacks play a major role in drought and heat wave-induced tree mortality (McDowell et al. 2011); however, patterns of C allocation to defence compounds (flux [5] in Figure 1) have not yet been considered. (iii) Response of C allocation to environmental change: combining labelling and ecosystem manipulation approaches like fertilization, water exclusion or warming experiments will be useful for disentangling the effects of environmental factors versus phenology, both being confounded when addressing seasonal variations of allocation patterns. (iv) Seasonality versus phenology effects in and across different biomes: there is a particular need for pulse-labelling experiments on tropical trees. They play a major role in the global C cycle (Malhi 2010) and have a distinct phenology compared with temperate and boreal tree species. (v) C–N interactions: dual C and N labelling experiments will not only deepen our understanding of the coupling of C and N dynamics in trees (Millard and Grelet 2010), but will also improve the parameterization of coupled biogeochemical cycles in forest C balance models (Chapin et al. 2009).

New tools like compound-specific isotope analysis (CSIA; Meier-Augenstein 1999, Godin et al. 2007), proton-transfer reaction mass spectrometry (PTR-MS; Ghirardo et al. 2010) or nano-scale secondary ion mass spectrometry (nano-SIMS; Herrmann et al. 2007, Hatton et al. 2012), which have become available only relatively recently, will permit tracing isotopes into specific C compounds and will enable micro-scale localization of labelled C in tree tissues and in the soil. This will facilitate the study of a range of topics, including the within-tree translocation of C, the exudation of organic C compounds by the rhizosphere or their emission to the atmosphere. Besides pulse-labelling, long-term labelling of trees in the field will improve our knowledge on residence times and turnover rates of C in long-lived pools of organic matter in perennial tree organs and in soils, both crucial for C sequestration (Körner 2006).

Finally it should be noted that much of the available knowledge has been gained in pulse-labelling experiments using relatively small trees, while in situ whole-tree labelling experiments are still scarce although urgently needed to improve our understanding of environmental and physiological controls on C allocation.
Acknowledgments

We are particularly grateful to M.G. Ryan for helpful advice when revising the manuscript.

Conflict of interest

None declared.

Funding

This idea for this review emerged during a workshop on ‘Analysing post labelling experiments’ held in Nancy, France, in March 2010, which was supported by the COST Action ES0806 SIBAE (Stable Isotopes in Biosphere-Atmosphere-Earth System Research, http://www.sibae.ethz.ch/cost-sibae/). M.D. came to Nancy within the frame of a bilateral JSPS-INRA project. Research by F.A.L. has been funded by the DFG (La2390/1-1). Research of J.P. was funded by Academy of Finland project number 218094. N.B. and M.B. acknowledge the support from the European Commission for the project Carbo-Extreme (FP7-ENV-2008-1-226701).

References

